

Productionserver API developers guide · Page 1 of 104

TechNote: Productionserver API Developers Guide

History:
2018-10-15 / Sebastian Wegner: Rev 1
2018-10-30 / Sebastian Wegner: Rev 2

Rearranged Chapter 4
GetJobStatus: Chapter 4.4.1
InsertOnTop, Abort job: Chapter 4.4.5

2018-11-28 / Sebastian Wegner: Rev 3
Responses in XML according to Accept header, Chapter 1.4.2
Starting the server, Chapter 1.5
Color prediction, Chapter 3.8
Get cost calculation data, Chapter 4.4.3
Get notifications, Chapter 4.4.5
Abort job, Chapter 4.5
Notification subscriptions, Chapter 6

2018-12-07 / Sebastian Wegner: Rev 4
New error notifications, Chapter 6.4

2019-01-21 / Jens Kopp: Rev 5
New job status and notifications for failures, Chapter 4.4.1 and 6.4

2019-04-05 / Sebastian Wegner: Rev 6
New endpoint “profiles”, Chapter 7
Color prediction: new parameter “inkSaving”, Chapter 3.8
Job settings: Breaking change. New section “color” for color management settings.
New parameter “inkSaving”. Chapter 4.5.1.1

2019-05-24 / Sebastian Wegner: Rev 7
New endpoint “systemLog”, Chapter 2.2
Changed endpoint infos to infos/status,
Chapter 2.12.1

2019-08-07 / Sebastian Wegner: Rev 8
New job settings parameters, Chapter 4.5.1.3

2019-10-07 / Sebastian Wegner: Rev 9
Draft for linearization API, Chapter 7.

2019-11-11 / Sebastian Wegner: Rev 10
Reworked linearization API draft, Chapter 7, step now last part of the URL.
New endpoint “Get data”

2020-02-14 / Sebastian Wegner: Rev 11
 Corrected droplet.count data type to Integer64, Chapter 4.4.3
 Added option “redundantPatches” for target creation, Chapter 7.7
 Renamed type Int and Integer to Integer32 to distinguish from Integer64

Re-added lost chapter of workflow settings, Chapter 4.5.1.7
2020-08-12 / Sebastian Wegner: Rev 12
 Added GET list of notification subscriptions. Chapter 6.1
2020-08-13 / Sebastian Wegner: Rev 13
 Added options for target printing. Chapter 7.8
2020-09-04 / Sebastian Wegner: Rev 14
 Rip settings for antialiasing updated. Chapter 4.5.1.5
 Added inkSavingTolerance. Chapter 4.5.1.1
2020-09-09 / Sebastian Wegner: Rev 15
 Added colorCorrectionSettings. Chapter 4.5.1.2

Productionserver API developers guide · Page 2 of 104

2020-10-20 / Sebastian Wegner: Rev 16
 Added result when printing targets. Chapter 7.8
2020-11-06 / Sebastian Wegner: Rev 17
 Added Json result data for measurement data. Chapter 7.10
 Renamed endpoint infos to system and added restart endpoint. Chapter 1.5.3
 Added progressPercent and lastError to job status. Chapter 4.4.1
2021-01-12 / Sebastian Wegner: Rev 18
 Added option to set patchData. Chapter 7.9
2021-02-23 / Sebastian Wegner: Rev 19
 Changed blackpoint values field to enable multicolor. Chapter 7.11
 Job settings will now be changed via endpoint “settings” (4.5.1) instead of

a modifying action (4.5.2).
Added profile settings to color management settings. Chapter 4.5.1.1.
Added endpoints to access the color table of a job (4.4.6 and 4.5.2).
Added endpoint to access color table files. Chapter 8
Added endpoint to access MIMs. Chapter 3.9.
Remove MIM list from endpoint configuration (Chapter 3.7)
Added endpoint to access output profiles and linearizations. Chapter 3.10

2021-06-07 / Sebastian Wegner: Rev 20
 Added workflowType and user defined media sizes to hotfolder list, Chapter 3.7
2021-06-30 / Sebastian Wegner: Rev 21
 Added “CustomColorModel” for device color replacement, Chapter 8
2021-07-21 / Sebastian Wegner: Rev 22
 Added “JDF” for hotfolder info, Chapter 3.7
2021-09-28 / Sebastian Wegner: Rev 23
 Added ink splitting options for each channel, Chapter 7.9
2021-11-03 / Jens Kopp: Rev 24
 Added endpoint „colorCorrection” to access the functionality of the

Color Correction Loop Module (CCLM), Chapter 9
2021-11-18 / Sebastian Wegner: Rev 25
 Added endpoints for additional jobs in „colorCorrection”

Chapters 9.3, 9.8, 9.9
2021-12-01 / Sebastian Wegner: Rev 26
 Added target options and corrected description of „profiling GET data”

Chapter 7.10
2022-02-25 / Sebastian Wegner: Rev 27
 Added setting and retrieving droplet separation curves Chapter 0 and 7.5
2022-03-09 / Sebastian Wegner: Rev 28
 Changed output of Lch values to array, corrected data types of color data

Chapters 7.10
2022-05-19 / Sebastian Wegner: Rev 29

Brightness and contrast changed from integer to double type, Chapter 4.5.1.2
 Added cropping parameters and output mirroring, Chapter 4.5.1.3
 Added download of target files, Chapter 7.8

Added download of print output files, Chapters 4.4.1 and 4.6
2022-06-24 / Sebastian Wegner: Rev 30
 Added endpoint “GET job settings”, Chapter 4.4.7
 Added options for control wedge target in job Settings, Chapter 4.5.1.3

Added endpoint “controlWedge”, Chapter 10
Added endpoint “measurementDevices”, Chapter 2.5

2022-07-06 / Sebastian Wegner: Rev 31
 Added security hints, Chapter 1.5.3
 Added control wedge workflow example, Chapter 10.5
 Added new profiling options, Chapter 7.11

Productionserver API developers guide · Page 3 of 104

2022-07-14 / Sebastian Wegner: Rev 32
 Changed data type of active and combinable channels to array, Chapter 7.11
2022-08-22 / Sebastian Wegner: Rev 33
 Added support for Epson SpectroProofer, Chapters 7.3 and 7.8
2022-09-07 / Sebastian Wegner: Rev 34
 Corrected value “maxDensityTargetValue” to “maxDensity”, Chapters 7.9 and 7.10
2022-10-05 / Sebastian Wegner: Rev 35
 Added “maxDensityIndex” as alternative to “maxDensity”, Chapters 7.9 and 7.10
2022-11-08 / Sebastian Wegner: Rev 36
 Added new endpoint for containers, Chapter 11
2022-12-12 / Sebastian Wegner: Rev 37
 Added new fileInfos object containing output file information, Chapter 4.4.1
2022-12-13 / Sebastian Wegner: Rev 38
 Added separation curves as read only parameter of profiling options, Chapter 7.11
2023-01-13 / Sebastian Wegner: Rev 39

Made option “downloadOutputFiles” available when creating a new job
with autoRip and autoPrint, Chapter 4.2

2023-01-18 / Sebastian Wegner: Rev 40
Output file information now also appear when “downloadOutputFiles” option is not
active, Chapter 4.4.1

2023-02-20 / Sebastian Wegner: Rev 41
Allow opening a profile in a specific queue, Chapter 7.12

Productionserver API developers guide · Page 4 of 104

Inhalt

1 Basic information... 8

1.1 Introduction ..8

1.2 REST ...8

1.2.1 HTTP based ...8

1.2.2 Versioning ...8

1.2.3 Resources / Endpoints ...9

1.2.4 Actions / Methods ..9

1.3 HTTP requests ... 10

1.3.1 Basic components .. 10

1.3.2 Authorization ... 10

1.3.3 Message body ... 11

1.4 Responses .. 12

1.4.1 Status code .. 12

1.4.2 Response data .. 13

1.5 Starting the server .. 16

1.5.1 The server log window .. 16

1.5.2 Configuration ... 17

1.5.3 Security .. 18

2 Endpoint „system“ .. 19

2.1 Status ... 19

2.2 System log .. 19

2.3 Clear log .. 20

2.4 Restart .. 20

2.5 Measurement devices ... 20

3 Endpoint “queues” ... 21

3.1 List queues ... 21

3.2 Open queue .. 21

3.3 Close queue .. 21

3.4 Get status .. 22

3.5 Set status ... 22

Productionserver API developers guide · Page 5 of 104

3.6 List print jobs .. 23

3.7 Get configuration ... 24

3.8 Color prediction ... 25

3.9 MIMs ... 27

3.9.1 List MIMs ... 27

3.9.2 Get MIM settings .. 27

3.9.3 Change MIM settings ... 28

3.10 Get profiles .. 28

4 Endpoint „jobs“ ... 29

4.1 List jobs .. 29

4.2 Create new or duplicate job .. 30

4.3 Delete job .. 31

4.4 Get job data ... 31

4.4.1 Get job status .. 31

4.4.2 Get log ... 33

4.4.3 Get cost calculation data ... 34

4.4.4 Get preview file .. 35

4.4.5 Get notifications ... 35

4.4.6 Get color table ... 36

4.4.7 Get job settings .. 36

4.5 Change job data ... 37

4.5.1 Job settings ... 37

4.5.2 Color table .. 50

4.6 Job actions ... 51

5 Endpoint „files“ ... 52

5.1 Upload file ... 52

5.2 Download file .. 52

5.3 Delete file .. 52

5.4 List files. ... 53

5.5 Get file information .. 53

6 Endpoint „notificationSubscriptions“ ... 54

6.1 List subscriptions .. 54

6.2 Create subscription ... 55

Productionserver API developers guide · Page 6 of 104

6.3 Remove subscription .. 55

6.4 Sent notifications ... 56

7 Endpoint „profiles“ ... 59

7.1 Create profile .. 60

7.2 Close .. 61

7.3 Get status .. 61

7.4 Get curves .. 63

7.5 Send curves .. 64

7.6 List targets ... 65

7.7 Create target .. 66

7.8 Print target .. 68

7.9 Send data ... 69

7.10 Get data .. 70

7.11 Calculate linearization / profile .. 72

7.12 Open profile ... 76

7.13 Workflow examples ... 76

8 Endpoint „colorTables“ .. 79

8.1 List color tables ... 79

8.2 Get color table .. 79

8.3 Create color table entries ... 82

8.4 Change color table entries ... 82

8.5 Delete color table / entries ... 82

9 Endpoint „colorCorrections“.. 83

9.1 Create color correction .. 83

9.2 Delete color correction .. 83

9.3 Get color correction info ... 84

9.4 Create inspection system files .. 84

9.5 Create iteration ... 85

9.6 Delete iteration ... 85

9.7 Get status .. 86

9.8 Add jobs to correction .. 86

9.9 Remove jobs from correction ... 86

Productionserver API developers guide · Page 7 of 104

9.10 Workflow example .. 87

10 Endpoint „controlWedge“ ... 88

10.1 Get targets ... 88

10.2 Get evaluation ... 88

10.3 Create evaluation ... 90

10.4 Delete evaluation ... 91

10.5 Workflow example .. 91

11 Endpoint „container“ .. 92

11.1 Create container .. 92

11.2 Get container data .. 92

11.2.1 Get job list .. 92

11.2.2 Get settings ... 93

11.3 Change container data ... 96

11.3.1 Add jobs ... 96

11.3.2 Change settings ... 96

11.3.3 Change positions ... 96

11.3.4 Trigger auto arrangement .. 97

11.4 Remove container data .. 97

11.4.1 Remove jobs .. 97

11.4.2 Split container .. 97

12 Testing with Postman .. 98

12.1 Introduction .. 98

12.2 Example: Printing a file: .. 101

Productionserver API developers guide · Page 8 of 104

1 Basic information

1.1 Introduction

The Productionserver API provides access to basic functions of the Productionserver (PS)
such as opening and closing printer queues or creating and tracking print jobs. The main
goal is to embed PS into a workflow which is controlled by third party applications.
This manual is intended for developers who want to implement a connection using it.
The API is designed as a REST service. This means it is providing a HTTP server which is
accepting requests on a specific TCP port. Once the server is started you can send HTTP
requests to the application and receive responses from it. Readers should be familiar
with basic HTTP communication to understand this manual.

Because HTTP is the same protocol internet browsers use to access web pages it is possi-
ble to use a browser to create requests and test the functionality of the API. There is
also useful software such as Postman which makes it easy to create HTTP requests and
show the results of the server. A collection of Postman requests accompanies this man-
ual, so you can test the basic functionality before implementing your own client. See
chapter 6.

1.2 REST

REST (Representational state transfer) is a design model for communication between ap-
plications in a network. It is mostly based on the HTTP protocol and defines some basic
principles which the Productionserver tries to follow whenever appropriate:

1.2.1 HTTP based

The server is available in the network and responds to requests on a TCP port. By de-
fault, the server uses secure communication over HTTPS and listens on port 443. Assum-
ing you have a computer with the name “MyProductionserver” the service will be availa-
ble with an URI like that:

https://MyProductionserver:443

1.2.2 Versioning

As the implementation of the API may evolve it is necessary to define the version which
should be used. Future implementations could change the API in a way that existing calls
are not compatible anymore. To avoid this, you must always provide the version as the
first element in a request URI:

https://MyProductionserver:443/v1

The current version of the API is 1, so appending v1 is the only option.

https://www.getpostman.com/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://myproductionserver/
https://myproductionserver/v1

Productionserver API developers guide · Page 9 of 104

1.2.3 Resources / Endpoints

A server provides a resource via an address. This address is also called an endpoint. Sub-
addresses are used if a single instance or resource should be accessed.

Access the list of printer queues:

https://MyProductionserver:443/v1/queues

Access a single printer queue with the name “MyQueue”:

https://MyProductionserver:443/v1/queues/MyQueue

Get the job list of the printer queue “MyQueue”:

https://MyProductionserver:443/v1/queues/MyQueue/jobs

1.2.4 Actions / Methods

The basic actions which should be done with the resource are expressed as HTTP meth-
ods.
The following standard HTTP methods will be used:

• GET requests ask for information without modifying the resource.

• PUT requests modify an existing resource.

• POST requests create a new resource.

• DELETE requests delete an existing resource.

https://myproductionserver/v1/queues1
https://myproductionserver/v1/queues/MyQueuer
https://myproductionserver/v1/queues/MyQueue/jobs

Productionserver API developers guide · Page 10 of 104

1.3 HTTP requests

1.3.1 Basic components

A complete HTTP request consists of four basic elements:

• The URI to access the resource on a server.

• The method to express the desired action.

• The message header to provide additional information such as the type of the
message body and authorization data.

• The message body which contains additional data such as parameters or binary
file data.

This documentation describes a request in the following form:

GET /v1/endPointName/resourceName

Parameters:

param1 Bool Description of param1

param2 Integer32 Description of param2

Result:

result1 String Description of result1

result2 Integer32 Description of result2

The message header will not be documented explicitly because it will be filled with
HTTP standard elements. You always must provide the authorization credentials and the
content-type field. Optionally you can provide an accept-language field to select the
preferred language for localized content (for example “de” for German).

1.3.2 Authorization

Each request must contain username and password of an existing user in the Access Con-
trol Module (ACM).
The server uses the Basic Authentication scheme.

Method and
URI

Name and
type of para-
meters

Name and
type of results

Productionserver API developers guide · Page 11 of 104

1.3.3 Message body

The message body can be JSON data, XML data or any binary data. If a request needs pa-
rameters JSON is the preferred way to send them. A raw request can look like this:

GET https://MyRESTServer:443/v1/endPointName/resourceName

content-type:"application/json"
cache-control:"no-cache"
authorization:"Basic V2VnbmVyOmJvY2t3dXJzdDIx"
accept-language:"de"

{
 “param1”: true,

“param2”: 12
}

The same request can also use XML instead of JSON. The name of the root element will
be ignored by the server and can be any name you choose.

GET https://MyRESTServer:443/v1/endPointName/resourceName

content-type:"text/xml"
cache-control:"no-cache"
authorization:"Basic V2VnbmVyOmJvY2t3dXJzdDIx"
accept-language:"de"

<?xml version="1.0" encoding='UTF-8'?>
<root>
 <param1>true</param1>
 <param2>12</param2>
</root>

Parameters can also be appended to the URI instead:

https://MyRESTServer:443/v1/endPointName/resourceName?param1=true¶m2=12

https://myrestserver/v1/endPointName/resourceName?param1=true¶m2=12

Productionserver API developers guide · Page 12 of 104

1.4 Responses

1.4.1 Status code

Each response will at least provide a HTTP status code as a general type of feedback. A
complete list of defined status codes can be found here. A successful request will usually
be answered with HTTP_OK = 200, a successful POST request with HTTP_CREATED = 201.

The following status codes are used by the server:

Code Name Description

200 Ok Successful GET- PUT- or DELETE request.

201 Created Successful POST-request.

400 Bad request Invalid parameters.

401 Unauthorized User or password invalid or authorization not possible.

403 Forbidden The resource cannot be accessed because it is usable only for another
user/process.

404 Not found The resource was not found.

405 Method not allowed The specified method is not allowed by this endpoint.

409 Conflict The resource is used by another user/process.

422 Unprocessable entity The requested action cannot be performed.

429 Too many requests Too many requests at once.

500 Internal server error Mostly because of programming errors.

501 Not implemented Endpoint exists but not implemented yet.

503 Service unavailable Server is in maintenance mode.

https://httpstatuses.com/

Productionserver API developers guide · Page 13 of 104

1.4.2 Response data

Response data is usually in JSON if the response is text data. Check the Content-Type
field of the response message header. If the request provides an Accept message header
and it is set to text/xml or application/xml the server will respond in XML instead of
JSON.
Most text responses will provide status information about the handled request:

• user: The name of the user who created the request.

• version: The version of the request.

• endpoint: The accessed endpoint.
method: The method of the request.

• code: The HTTP result code which is also part of the common HTTP result.

• text: The standard text of the HTTP result.

• time: The time needed to handle the request in milliseconds.

• error: Optional additional information about the cause of an unsuccessful opera-
tion.

A successful request contains the status block at the beginning followed by the payload
data:

{
 "status": {
 "user": "Wegner",
 "version": "v1",
 "endpoint": "queues",
 "method": "GET",
 "code": 200,
 "text": "OK",
 "time": 128
 },
 "queueName": "PDF FLAT HIGH-RES",
 "printerName": "PDF FLAT HIGH-RES",
 "printerID": 362,
 "printerCaps": {
 "hasRoll": true,
 "hasCutter": false,
 "supportsBorderlessPrinting": false
 },
 "hotfolders": [
 {
 "name": "PDF FLAT HIGH-RES",
 "path": "C:\\ProgramData\\ColorGATE Software\\Production-
server10\\HotDir\\PDF FLAT HIGH-RES\\",
 "active": true
 }
],
 "media": [
 {
 "name": "Paper",

Productionserver API developers guide · Page 14 of 104

 "ID": "C1B731C1",
 "type": "Private",
 "Inks": [
 {
 "name": "Ink",
 "ID": "00014522",
 "type": "Private",
 "MetaModes": [
 {
 "name": "Mode",
 "ID": "002C1EA5",
 "type": "Private"
 }
]
 }
]
 }
],
 "mediaSizes": [
 {
 "name": "Roll - ISO A3",
 "ID": "00002711",
 "width": 297,
 "height": 60000
 },
 {
 "name": "Roll - ISO A2",
 "ID": "00002712",
 "width": 420,
 "height": 60000
 }
]
}

Productionserver API developers guide · Page 15 of 104

If you are only interested in special parts of the response you can provide the parameter
responseFields=value1,value2,.. with the name of the fields you are interested in, for
example

https://MyRESTServer:443/v1/queues/queueName?responseFields=queueName,hotfold-
ers.

This only applies to the root elements of the json (or XML) data. The status information
will always be delivered completely.

{
 "status": {
 "user": "Wegner",
 "version": "v1",
 "endpoint": "queues",
 "method": "GET",
 "code": 200,
 "text": "OK",
 "time": 182
 },
 "queueName": "PDF FLAT HIGH-RES",
 "hotfolders": [
 {
 "name": "PDF FLAT HIGH-RES",
 "path": "C:\\ProgramData\\ColorGATE Software\\Production-
server10\\HotDir\\PDF FLAT HIGH-RES\\",
 "active": true
 }
]
}

An unsuccessful request only contains the status block. The error field contains addi-
tional information about the cause of failure:

{
 “status”: {
 “user”: “Wegner”,
 “version”: “v1”,
 “endpoint”: “queues”,
 “method”: “put”,
 “code”: 400,
 “text”: “Bad request”
 “time”: 954,
 “error”: “Resource name missing”
 }
}

https://myrestserver/v1/queues/queueName?responseFields=queueName,hotfolders
https://myrestserver/v1/queues/queueName?responseFields=queueName,hotfolders

Productionserver API developers guide · Page 16 of 104

1.5 Starting the server

1.5.1 The server log window

To start the server manually the menu command Options->REST Server must be chosen.
This will open the server log window. All other windows are now disabled to suppress ac-
cess of the GUI while remote requests are served.

The button “Start server” can be pressed to start the server. The button text will
change to “Stop server”, so the server can be stopped by pressing it again.
If the log window gets closed by the user, the server will not stop but turn into mainte-
nance mode. This way remote requests will be rejected with a 503 HTTP_SERVICE_UNA-
VAILABLE status.

The option “Start server automatically at startup” can be used to start the server imme-
diately after opening the program. This way it is not necessary anymore to start it manu-
ally.

The server automatically logs any incoming request which can be viewed in the log list.
The button “Refresh log” can be used to reload the current log file and display it in the
list. The option “Refresh list automatically” can be used to reload the current log file
once per second. This can be turned off for performance reasons.

Productionserver API developers guide · Page 17 of 104

1.5.2 Configuration

There is no GUI to configure the server’s parameters. Any option differing from the de-
fault configuration must be configured in the ini file. For this purpose a [REST_API] sec-
tion must be created if not already present.

The following parameters can be set:

Name Description

AllowGUI 0 or 1, by default the GUI is disabled when the server is running. This be-
havior can be turned off with this switch. However, this is not recom-
mended in a production workflow because program stability cannot be
guaranteed when using the GUI at the same time when remote requests are
served.

Default is 0.

AutoRefreshLog Controls if the log list will be refreshed automatically. Can be configured in
the log window.

Default is 0.

AutoStartServer Controls if the server starts automatically after program startup. Can be
configured in the log window.

Default is 0.

MaxQueuedRequests Number of simultaneously accepted requests. If a request cannot be served
immediately (see the following parameter) it will be queued and served
later. If this number is exceeded the request will be rejected.

Default is 1000.

MaxThreads Number of simultaneously served requests.

Default is 16.

Port The port over which the server is accessible. If you don’t provide this pa-
rameter the default ports are used (80 for unsecure connection over http,
443 for secure connection over https).

UseSSL Controls if secure connections shall be used.

0 = Unsecure access via http

1 = Secure access via https

Default is 1. It is not recommended to use an unsecure connection.

LogJsonBody Logs every single request in a file in CGLogs. Useful for support cases.
Should not be enabled generally because it will produce many files and de-
crease performance.

0 = Disabled (Default)

1 = Enabled

Productionserver API developers guide · Page 18 of 104

1.5.3 Security

1.5.3.1 Certificate

By default, all connections are secured by the https protocol. For this purpose, a self-
signed certificate is used for authorization. You find the certificate files “certifi-
cate.pem” and “key.pem” in the installation directory:

C:\Program Files (x86)\ColorGATE Software\ProductionserverXX\SSL

If you want to use your own certificate you can copy your own files to this location.
From V22.10 on it is possible to put your files into the program data folder. This is the
recommended way because the files are not overwritten when installing a Production-
server update. As long as the filenames are the same Productionserver automatically
uses them, if they are present.

C:\ProgramData\ColorGATE Software\ProductionserverXX\SSL

1.5.3.2 TLS

From V22.10 the minimum required TLS version is 1.2, in older version it was 1.0. Be-
cause older TLS versions than 1.2 have numerous known security issues it is not recom-
mended to use them. However, if needed you can change the minimum required TLS
version with an ini setting:

Possible values are 1.0, 1.1, 1.2 and 1.3

Productionserver API developers guide · Page 19 of 104

2 Endpoint „system“

This endpoint accesses general system data.

2.1 Status

Checks if the server is available and if the user is authorized to access the API.
As a result, you retrieve basic server information.

GET system/status

Result:

product String Product name.

version String Version number.

serialNumber String Serial number.

serverStart String Server start in UTC time.

serverUptime String Time since server has started.

versionAPI String Maximum supported version.

2.2 System log

Use this endpoint to retrieve the system log.

GET system/log

Result:

log Array Log messages.

Array log

event String The event. See the chapter 0 for possible values.

date String Date of the event in the format YYYY-MM-DD.

time String Time of the event in the format HH:MM:SS.

queueName String Optional: The name of the queue. This will only be sent for the notification
identifiers “Queue.XXX”.

jobID String Optional: The identifier of the job. This will only be sent for the notification
identifiers “Job.XXX”.

fileName String Optional: The filename of the job. This will only be sent for the notification
identifiers “Job.XXX”.

data Array Optional: A list of textual data. It is present in the notifications Job.Contain-
erAdd, Job.ContainerRemove and Job.PrintPageFinished, Job.RipGeneralFailure
and Job.PrintGeneralFailure.

Productionserver API developers guide · Page 20 of 104

2.3 Clear log

Use this endpoint to clear the system log. Returns the list of removed log entries. This
way it is possible to retrieve and clear the system log in one step.

DELETE system/log

Result:

log Array Log messages.

2.4 Restart

It can be useful to restart the application regularly to avoid problems caused by memory
leaks or other issues.
Use this endpoint to force a restart of the Productionserver application. After restart,
the REST service will start automatically.

If no other requests are currently being served and no jobs are currently processing the
application immediately restarts and the server is no longer responding. You can then
poll the status (Chapter 2.1) to check if the server is running again.
If other requests are currently being processed a HTTP_FORBIDDEN result will be re-
turned.
If any job is currently processing, you will also receive a HTTP_FORBIDDEN result and a
list of jobs, which are currently processing.

GET system/log

Result:

jobs Array Optional: Contains list of currently processing jobs.

2.5 Measurement devices

Gets a list of all licensed measurement devices. The name of the device is used in vari-
ous other endpoints.

GET system/measurementDevices

Result:

measurementDevices Array The list of devices

Array measurmentDevices

name String The name of the device. This is used as the identifier of a device in various
endpoints.

descriptiveName String Optional: The name of the device for display if it differs from the name.

Productionserver API developers guide · Page 21 of 104

3 Endpoint “queues”

This endpoint accesses open printer queues of the Productionserver. Queues are identi-
fied by their name, so the URI path must have the “queueName” segment appended to
access a single queue.

3.1 List queues

Gets a list of open printer queues:

GET queues

Result:

queues Array The list of queues.

Array queues

queueName String The name of the queue.

device String The name of the printer.

3.2 Open queue

Opens a printer queue. The queue itself will not be created (as POST may suggest) but
an existing cos file will be opened. This way a new accessible entity of a queue is cre-
ated.

POST queues

Parameters:

fileName String Name of the cos file to load.

Result:

queueName String The name of the queue. This must be used in all following requests to access
the queue.

3.3 Close queue

Closes a printer queue. The queue itself will not be deleted (as DELETE may suggest) but
the cos file will be closed. Any changes (made manually before starting REST) will be
saved. You can reopen it with POST whenever needed.

DELETE queues/queueName

Result:

n/a

Productionserver API developers guide · Page 22 of 104

3.4 Get status

Gets the status of a queue:

GET queues/queueName/status

Result:

ripEnabled Bool Status of the rip queue.

printEnabled Bool Status of the printer queue.

3.5 Set status

Sets the status of a queue:

PUT queues/queueName/status

Parameters:

ripEnabled Bool Status of the rip queue.

printEnabled Bool Status of the printer queue.

Result:

n/a

Productionserver API developers guide · Page 23 of 104

3.6 List print jobs

Gets a list of all the jobs in the queue:

GET queues/queueName/jobs

Result:

jobs Array The list of jobs.

Array jobs

jobID String The identifier of the job.

jobName String The name of the job.

fileName String The name of the file to print.

size String The size of the job.

copies Integer32 The number of copies.

creationDate String The creation date of the job.

fileSize String Optional: File size of the job.

ripped Bool If the job was ripped.

printed Bool If the job was printed.

printDate String Optional: The print date of the job.

backup Bool If the job was backed up.

backupDate String Optional: The backup date of the job.

preview Bool If preview data exists.

costCalc Bool If cost calculation data exists.

container Bool If the job is a container.

Productionserver API developers guide · Page 24 of 104

3.7 Get configuration

Gets the configuration of the queue:

GET queues/queueName/config

Result:

queueName String Identifier of the queue.

printerName String Name of the printer.

printerID String Identifier of the printer.

printerCaps Object Printer capabilities.

hotfolders Array Optional: The list of hotfolders.

mediaSizes Array Optional: The list of media.

Object printerCaps

hasRoll Bool

hasCutter Bool

supportsBorderlessPrinting Bool

Array hotfolders

name String The name you must provide when creating a new job.

path String The internal path of the hotfolder.

active Bool

workflowType String Name of the workflow type.

“Production”, “Proof”, “Screen”

mediaSizesUserDefined Array List of user defined media

JDF Bool True = The hotfolder is a JDF folder and cannot be used
for REST.

Array mediaSizes, mediaSizesUserDefined

name String The name of the media

ID String The internal ID of the media

width, height double Media size

marginLeft, marginRight,
marginTop, marginBottom

double Optional: margins, only if > 0.0

Productionserver API developers guide · Page 25 of 104

3.8 Color prediction

Calculates spot color estimation data. Either a MIM combination must be provided as pa-
rameter or the hotfolder whose current MIM combination should be used for calculation.

PUT queues/queueName/colorPrediction

Parameters:

mim Object Optional: Color management settings.

hotfolder String Optional: Name of the hotfolder which settings should be used. Only needed
if no mim is set.

colors Array List of colors for which the calculation shall be processed.

inkSaving

String The following values are supported:

“None”

“Min”

“Medium”

“Max”

Object mim

media String Media name of requested MIM-combination.

ink String Ink name of requested MIM-combination.

metaMode String Metamode name of requested MIM-combination.

Array colors

name String Identifier for the color.

type String Type of the color values. Possible values:

“LAB”,

“CMYK”

“RGB”

“GRAY”

values Array List of double values. Depending of the type the length of this list varies.

Productionserver API developers guide · Page 26 of 104

Result:

Result

colors Array List of colors

Array colors

name String Identifier for the color.

inputColor Object A copy of the color data of the request.

ok Bool Identifies if the calculation was successful.

predictedColor Object The resulting Lab color. Only available if the calculation was successful.

deltaE76 Double The delta E of the predicted color. Only available if the calculation was suc-
cessful.

deltaE94 Double The delta E of the predicted color. Only available if the calculation was suc-
cessful.

deltaE00 Double The delta E of the predicted color. Only available if the calculation was suc-
cessful.

Object inputColor

name String Identifier for the color.

type String Type of the color values. Possible values:

“LAB”,

“CMYK”

“RGB”

“GRAY”

values Array List of double values. Depending of the type the length of this list varies.

Object predictedColor

type String Type of the color values. Always “LAB”

values Array Three Lab values.

Productionserver API developers guide · Page 27 of 104

3.9 MIMs

3.9.1 List MIMs

Gets a list of all the MIMs available in this queue.

GET queues/queueName/mim

Result:

mims Array Array with all MIM combinations.

Array mims

media String Media name of MIM-combination.

ink String Ink name of MIM-combination.

metaMode String Metamode name of MIM-combination.

colorMode String Name of the color mode. “CMYK”, “RGB”…

workflowType String Name of the workflow type.

“Production”, “Proof”, “Screen”

3.9.2 Get MIM settings

Gets the settings of a particular MIM.

GET queues/queueName/mim

Parameters:

mim Object The selected MIM combination.

Result:

mimSettings Object The settings of the selected MIM combination.

Object mim

media String Media name of requested MIM-combination.

ink String Ink name of requested MIM-combination.

metaMode String Metamode name of requested MIM-combination.

Object mimSettings

media String Media name of MIM-combination.

ink String Ink name of MIM-combination.

metaMode String Metamode name of MIM-combination.

profileSettings Object Settings from the “Profiles” tab of the advanced settings dialog.

See chapter 4.5.1.1

Productionserver API developers guide · Page 28 of 104

3.9.3 Change MIM settings

Changes the settings of a particular MIM.

PUT queues/queueName/mim

Parameters:

mimSettings Object The settings of the MIM combination to change. See chapter 3.9.2

3.10 Get profiles

Gets a list of the available output profiles and linearizations.

GET queues/queueName/profiles

Result:

outputProfiles Array The list of available output profiles.

outputLinearizations Array The list of available output profiles.

Array outputProfiles

name String Name of the profile.

colorMode Array Color mode of the profile. Not available for most generic color
modes (4CLR and more).

countChannels Integer32 The number of channels in the color mode.

Array outputLinearizations

name String Name of the linearization.

colorMode Array Color mode of the linearization.

Productionserver API developers guide · Page 29 of 104

4 Endpoint „jobs“

This endpoint maintains print jobs. New jobs can be created, existing jobs can be
tracked, modified or deleted.

4.1 List jobs

Gets a list of all jobs in all printer queues.

GET jobs

Result:

jobs Array The list of all jobs in all queues.

Array jobs

queueName String The name of the queue the job is in.

jobID String The identifier of the job.

jobName String The name of the job.

jobStatus String The status of the job:

The following values are possible:

“Idle”,

“Printing”, “Ripping”, “Copying”

“Capturing usage data”

“Creating preview”, “Creating backup”,

"Printing failed", "Ripping failed",

"Copying failed", "Analysis failed",

“Errors pending”

progressPercent Integer32 Optional: Progress between 0 and 100 if status is “Printing”, “Ripping”
or “Creating preview” or “Creating backup”.

lastError String Optional: Last error message of the job log if status is “Printing failed”,
“Ripping failed”, “Copying failed”,“Analysis failed” or “Errors pending”.
The error has the same format like one entry of the job log in chapter 0.

fileName String The name of the file to print.

size String The size of the job.

copies Integer32 The number of copies.

creationDate String The creation date of the job.

fileSize String Optional: File size of the job.

ripped Bool If the job was ripped.

printed Bool If the job was printed.

printDate String Optional: The print date of the job.

backup Bool If the job was backed up.

Productionserver API developers guide · Page 30 of 104

backupDate String Optional: The backup date of the job.

preview Bool If preview data is ok.

costCalc Bool If cost calculation data is ok.

colorCorrection Bool Optional: If color correction loop was applied.

container Bool If job is a container.

4.2 Create new or duplicate job

Creates a print job. If you create a new one the associated file must be uploaded to the
“files” endpoint first.
You can also duplicate an existing job here.

POST jobs

Parameters:

queueName String The name of the queue where the job shall be created.

hotfolder String Name of the hotfolder which settings should be applied. Only
needed when creating a new job.

fileID Integer32 ID of the associated file. You get this number when uploading the
file to the “files” endpoint. Only needed when creating a new job.

duplicateJobID String Optional: The ID of the job you want to duplicate. If you provide
this parameter, “hotfolder” and “fileID” are not needed and will be
ignored.

settings Object Job settings, which override the hotfolder settings. See chapter
4.5.1 for available options.

downloadOutputFiles Bool Optional: When creating a new job and automatic ripping and print-
ing is enabled a value of true makes the output files for the printer
available via REST. This is only useful for file-based printers.

The files can be downloaded with the “Files” endpoint. You can ob-
tain the file IDs via job status endpoint 4.4.1 or the notification
Job.PrintPageFinished.

Result:

 See contents of Array jobs in chapter 4.1.

Productionserver API developers guide · Page 31 of 104

4.3 Delete job

Removes the job.

DELETE jobs/jobID

Result:

n/a

4.4 Get job data

These endpoints provide information and data for a particular job.

4.4.1 Get job status

Get the status of the job.

GET jobs/jobID/status

Result:

queueName String The name of the queue the job is in.

jobID String The identifier of the job.

jobName String The name of the job.

jobStatus String The status of the job:

The following values are possible:

“Idle”,

“Printing”, “Ripping”, “Copying”

“Capturing usage data”

“Creating preview”, “Creating backup”,

"Printing failed", "Ripping failed",

"Copying failed", "Analysis failed",

“Errors pending”

progressPercent Integer32 Optional: Progress between 0 and 100 if status is “Printing”, “Ripping”
or “Creating preview” or “Creating backup”.

lastError String Optional: Last error message of the job log if status is “Printing failed”,
“Ripping failed”, “Copying failed”,“Analysis failed” or “Errors pending”.
The error has the same format like one entry of the job log in chapter 0.

fileName String The name of the file to print.

size String The size of the job.

copies Integer32 The number of copies.

creationDate String The creation date of the job.

fileSize String Optional: File size of the job.

ripped Bool If the job was ripped.

Productionserver API developers guide · Page 32 of 104

printed Bool If the job was printed.

printDate String Optional: The print date of the job.

backup Bool If the job was backed up.

backupDate String Optional: The backup date of the job.

preview Bool If preview data exists.

costCalc Bool If cost calculation data exists.

outputFiles Array Optional: Only available for file-based printers.

Array outputFiles

fileID Integer32 Optional: The ID of the file if a print action demands to download the
output files (4.6).

filename String The name of the output file

fileType String The type of the output file. This value is driver dependent. For most
file-based drivers it can either be “SeparationFile” or “PreviewFile”.

fileInfos Object Optional, only if driver provides additional data for the output file.
Content is driver dependent.

The fileInfo object is driver dependent. However, many drivers provide the following in-
formation about an output file.

Object fileInfo

widthPixel Integer32 The width of in pixels.

heightPixel Integer32 The height in pixels.

resolutionX Double The horizontal resolution.

resolutionY Double The vertical resolution.

widthMM Double The width in mm.

heightMM Double The height in mm.

Productionserver API developers guide · Page 33 of 104

4.4.2 Get log

Gets the log messages of the current log file.

GET jobs/jobID/log

Result:

log Array The list of all log messages.

Array log

severity String The following values are possible:

“debug”

“info”

“warning”

“error”

“fatal”

time String The timestamp of the log message.

source String The application source of the log.

“FRONTEND”

“ANALYZE”

“RIP”

“PRINT”

text Array A string array with all log messages.

Productionserver API developers guide · Page 34 of 104

4.4.3 Get cost calculation data

Gets the current cost calculation data of the job.

GET jobs/jobID/cost

Result:

usageDataCalculated Object Calculated usage data generated when the job is printed, or when cost
has been estimated before printing.

usageDataReported Object Optional: Reported usage data generated when the printer has com-
pletely finished printing the job.

costData Object Job cost data.

Object usageDataCalculated and usageDataReported

ink Double Ink consumption, in milliliters.

printedMedia Double Amount of media that was printed on in square meters.

wastedMedia Double Amount of media that was produced but not printed on in square meters.

multiCopy Integer32 Amount of copies of the original job.

channels Array Per channel information about ink usage and droplet counts.

Array channels

ID Integer32 Channel ID.

name String Name of the channel.

ink Double Ink consumption for the channel, in milliliters.

droplets Array Amount of copies of the original job (only available for usageDataCalculated).

Array droplets

size Integer32 Index for the droplet size.

amount Double Ink amount per droplet of the given size, in picoliters.

count Integer64 Number of droplets of the given size.

Object costData

total Double Total job cost.

ink Double Cost of ink used for the job.

media Double Cost of media used for the job.

additional Double User defined additional charges added to total job cost.

surcharge Double Percentage value which affects total job cost.

Productionserver API developers guide · Page 35 of 104

4.4.4 Get preview file

Downloads the current preview file of the job. If the request is successful, the result
data will be an image file. Otherwise it is the JSON status data containing an error de-
scription. Check the HTTP status and the content-type field of the response.

GET jobs/jobID/preview

Parameters:

imageType String Optional: If you don’t provide this parameter a TIFF file will be created.

The following values are supported:

“image/tiff” = Compressed TIFF format.

“image/png” = PNG format.

Result:

If HTTP status is HTTP_OK the Content-Type header field is set to “image/tiff” or “image/png”. The the
message body contains the binary data of the image file.

If an error occurred, the HTTP status is not HTTP_OK, the Content-Type header is set to “applica-
tion/json” and the message body contains the status data.

4.4.5 Get notifications

Many actions generate a notification which can be received by subscribers. See chapter
6 for more information.
This endpoint provides the complete history of all notifications of a job. Because it ac-
cesses the system log it should not be used for polling the job status. Instead use the
much more efficient endpoint 4.4.1.

GET jobs/jobID/notifications

Result:

notifications Array

Array notifications

notification String The notification identifier. See the chapter 0 for possible values.

date String Date of the notification in the format YYYY-MM-DD.

time String Time of the notification in the format HH:MM:SS.

jobID String Optional: The identifier of the job. This will only be sent for the notification
identifiers “Job.XXX”.

queueName String Optional: The name of the queue. This will only be sent for the notification
identifiers “Queue.XXX”.

data Array Optional: A list of textual data. It is present in the notifications Job.Contain-
erAdd, Job.ContainerRemove and Job.PrintPageFinished, Job.RipGeneralFailure
and Job.PrintGeneralFailure.

Productionserver API developers guide · Page 36 of 104

Array data

key String Identifier of the data value.

Possible values are:

When notification is Job.ContainerAdd or Job.ContainerRemove:

“ContainerName”: Name of the container job.

When notification is Job.PrintPageFinished:

“PageCount”: Number of total pages to print.

“PageNumber”: Number of the current printed page.

Specific printer drivers may add further data. See the driver documenta-
tion.

When notification is Job.RipGeneralFailure or Job.PrintGeneralFailure:

“ErrorMsg”: Description of the error.

value String

Integer32

Value.

4.4.6 Get color table

Gets the color table of the job.

GET jobs/jobID/colorTable

Result:

See chapter 8.2

4.4.7 Get job settings

Retrieves all settings which can be set in endpoint 4.5.1

GET jobs/jobID

Result:

Settings Object See chapter 4.5.1 for the description of every field.

Productionserver API developers guide · Page 37 of 104

4.5 Change job data

4.5.1 Job settings

Applies job settings.

PUT jobs/jobID/settings

Parameters:

settings Object

The parameter “settings” can also be used when creating a new job (Chapter 4.2). Every
parameter is optional.

The settings section is divided into eight sub-sections which are all optional:

Object settings

color Object Color management settings.

job Object Job settings.

printer Object Printer settings.

rip Object RIP settings.

driver Object Printer driver specific settings.

workflow Object Workflow settings.

admin Object Job administrative values.

formData Object Field data for PDF forms.

A settings section could look like this:

"settings": {

"color": {
"mim": {

"media": “Paper”,
"ink": “MyInk”,
"metaMode": “HD”

 },
 },
 "job": {
 "width": 275.0,
 "height": 163.0,
 "cutmarks": true

},
"driver": {

 "explicitWidth": 200
}
"workflow": {

 "autoPrint": "True"

Productionserver API developers guide · Page 38 of 104

 },
"formData": {

 "fields": [
 "name",
 "email"
],
 "sets": [

["Sebastian Wegner", "sebastian.wegner@colorgate.com"],
 ["Jens Kopp", "jens.kopp@colorgate.com"]
]
 }

Productionserver API developers guide · Page 39 of 104

4.5.1.1 Color management settings

The settings described in this section are related to the Color Management tab of the
hotfolder properties dialog.

Object color

mim Object Mim settings.

inkSaving String The following values are supported:

“None”

“Min”

“Medium”

“Max”

inkSavingTolerance Double Applicable if “inkSaving” is not “None”, a value between 0 and 5.

profileSettings Object Settings from the “Profiles” tab of the advanced settings dialog.

A mim setting must always specify all three fields.

Object mim

media String Media name of requested MIM-combination.

ink String Ink name of requested MIM-combination.

metaMode String Metamode name of requested MIM-combination.

Productionserver API developers guide · Page 40 of 104

Object profileSettings

useInputProfilesRGB Bool Use RGB profiles for both vector objects and bitmap ob-
jects.

useInputProfilesRGBvector Bool Use RGB profiles for vector objects.

useInputProfilesRGBbitmap Bool Use RGB profiles for bitmap objects.

inputProfileRGB String Name of the RGB input profile.

inputRenderingIntentRGB String Rendering intent for the RGB input profile.

Possible values:

"Perceptual"

"RelativeColorimetric",

"AbsoluteColorimetric",

"Saturation",

"AbsoluteCompression",

"LightenerCompensation",

"MinimumWhiteCompression",

"Absolute Perceptual",

"BlackpointCompensation"

useInputProfilesCMYK Bool Use CMYK profiles for both vector objects and bitmap
objects.

useInputProfilesCMYKvec-
tor

Bool Use CMYK profiles for vector objects.

useInputProfilesCMYKbit-
map

Bool Use CMYK profiles for bitmap objects.

inputProfileCMYK String Name of the CMYK input profile.

inputRenderingIntentCMYK String Rendering intent for the CMYK input profile.

Possible values: See inputRenderingIntentRGB.

useInputProfilesGray Bool Use Gray profiles for both vector objects and bitmap ob-
jects.

useInputProfilesGrayvector Bool Use Gray profiles for vector objects.

useInputProfilesGraybit-
map

Bool Use Gray profiles for bitmap objects.

inputProfileGray String Name of the Gray input profile.

inputRenderingIntentGray String Rendering intent for the Gray input profile.

Possible values: See inputRenderingIntentRGB.

inputRenderingIntentLab String Rendering intent for the LAB input profile.

Possible values: See inputRenderingIntentRGB.

useEmbeddedProfile Bool Use embedded profile.

usePdfRenderingIntents Bool Use PDFG rendering intents.

Productionserver API developers guide · Page 41 of 104

useBlackpointCompensa-
tion

Bool Use black point compensation.

preservePureColors String Possible values:

“None”,

“Black”,

“CMY”,

“CMYK”,

“CMYKRGB” (corresponds to C,M,Y,K, MY,CY,CM),

“CMYRGB” (corresponds to C,M,Y, MY,CY,CM),

“Custom”

preservePureColorExcep-
tions

Array<Bool> Only applicable if “preservePureColors” = “Custom”.
Possible values:

"pureBlack",

"purePrimaries",

"pureCyan",

"pureMagenta",

"pureYellow",

“pureSecondaries”,

“pureMY”,

“pureCY”,

“pureCM”,

"duplex",

"triplex",

“filterException”

useAdaptionProfile Bool Activates the adaption profile.

adaptionProfile String The name of the adaption profile.

useOutputProfile Bool Activates the output profile.

outputProfile String The name of the output profile.

useOutputLinearization Bool Activates the output linearization.

outputLinearization String The name of the output linearization.

useDeviceLinks Bool Activates the device link.

Productionserver API developers guide · Page 42 of 104

deviceLinkExceptions Array<Bool> Only applicable if “useDeviceLinks” = true. Possible val-
ues:

"pureBlack",

"blackOverprint",

"fullBlack",

"preserveZeroBlack",

"linearizeGray",

"pureGray",

"pureCMY",

"maxCMY",

"purePrimaries",

"pureCyan",

"pureMagenta",

"pureYellow",

"limitPrimaries",

"pureSecondaries",

"pureMY",

"pureCY",

"pureCM",

"pureRGB",

"maxRGB",

"pureWhite",

"duplex",

"triplex",

"purifyColor",

"filterException",

"clipToEdge"

saturationEnhancement String The following values are supported:

“None”

“Low”

“Medium”

“High”

“Extreme”

Productionserver API developers guide · Page 43 of 104

4.5.1.2 Color correction settings

The settings described in this section are related to the Color Correction tab of the Ad-
vanced color settings dialog.

Object colorCorrection

brightness Double Value between -100 and 100.

contrast Double Value between -100 and 100.

gamma Double Value between 0 and 20.

gradationCurves Array Gradation curves.

Array gradationCurves

channelName String Name of the channel which the curve is for. If it is empty the values apply to all
channels. See chapter 0 for possible channel names.

curvePoints Array Array of at least two curve points.

Object curvePoints

type String Type of the point:

“Bezier” for a Bezier point smoothing the curve.

“Corner” for a supporting point defining the curve.

x Double X coordinate of the point between 0 and 1.

y Double Y coordinate of the point between 0 and 1.

Productionserver API developers guide · Page 44 of 104

4.5.1.3 Job settings

The settings described in this section are related to the Job tab of the properties dialog.

Object job

jobName String Name of the job.

width Double Width of a single copy of the job to be produced in mm.

Note:

If this parameter is set to zero, the width will be calculated by apply-
ing the aspect ratio of the image to the value given by parameter
“height”.

height Double Height of a single copy of the job to be produced in mm.

Note:

If this parameter is set to zero, the height will be calculated by ap-
plying the aspect ratio of the image to the value given by parameter
“width”.

scaleX

scaleY

Double Scaling factors.

Note:

If one of these parameters are specified, the attributes ‘width’ and
‘height’ are ignored.

rotation String The following values are supported:

“Rotate0”: Do not rotate.

“Rotate90”: Rotate 90 degrees.

“Rotate180”: Rotate 180 degrees.

“Rotate270”: Rotate 270 degrees.

“RotateAuto”: Calculate best rotation automatically.

offsetX Double Horizontal offset of the job in mm.

offsetY Double Vertical offset of the job in mm.

alignX String Horizontal alignment.

The following values are supported:

“Left”

“Center”

“Right”

Note: If this parameter is specified, the attribute ‘offsetX’ is ignored.

Productionserver API developers guide · Page 45 of 104

alignY String Vertical alignment.

The following values are supported:

“Top”

“Center”

“Bottom”

Note: If this parameter is specified, the attribute ‘offsetY’ is ignored.

copyCount Integer32 Multi output count.

distanceX Double Horizontal distance of multiple output in mm.

distanceY Double Vertical distance of multiple output in mm.

freeInfo String Informational text.

scaleToFit String The following values are supported:

“FitToPage”: scale to fit a copy per page.

“ReduceToFit”: scale-down to fit a copy on a page, don’t scale-up.

“FitAllToPage”: scale to fit all copies on a single page.

“ClipToMaxPage”: scale to fit a copy per page, crop the image if nec-
essary (aspect ratio of image and media are different).

Note:

If this parameter is specified, the attributes ‘width’, ‘height’ ‘scaleX’
and ‘scaleY’ are ignored.

mirror Bool Flips the ouput horizontally.

disableAutoTiling Bool Controls auto-tiling. If this option is set, no auto-tiling is performed,
even if the job size exceeds the media size.

cutmarks Bool Controls printing of cut marks.

Note:

The settings of the cut marks (e.g. type of marks, size and distance)
must be specified in the hotfolder.

crop Bool Activates/Deactivates cropping.

cropOffsetX

cropOffsetY

cropWidth

cropHeight

Double If cropping is activated, these parameters are mandatory to define
the cropping rectangle in mm.

destinationFolder String Sets the output folder for the print files if the printer driver is file
based and the naming rule for the output files uses the element
“Destination Folder”.

controlWedge Bool Activates the output of a control wedge target.

controlWedgeOptions Object Options to configure the control wedge. Mandatory if ‘controlWedge’
is true.

Productionserver API developers guide · Page 46 of 104

Object controlWedgeOptions

targetName String Name of the control wedge target. A list of available targets can be
obtained by endpoint 10.1.

fileName String Filename of the target job. This corresponds with ‘targetName’.

positionLeft

positionRight

positionTop

positionBottom

positionAuto

turnWithJob

mirror

turnTop2MediaEdge

Bool Optional: Positioning options for the target.

align

String Optional: Alignment of the target. Available options:

“Left”,

“Center”,

“Right”

Productionserver API developers guide · Page 47 of 104

4.5.1.4 Printer settings

The settings described in this section are related to the Printer tab of the hotfolder
properties dialog.

Object printer

mediaSizeName String Specifies the media size as name. The name is converted to media
width and size using the media sizes provided by the printer driver.

mediaWidth Double Width of the media, used to produce the job, in mm.

mediaHeight Double Height of the media, used to produce the job, in mm.

Note: If this parameter is set equal/below 0 (zero), the rollfeed option
is activated.

mediaCompensationX

mediaCompensationY

Double Factors to compensate variations of the output size, e.g. due to inac-
curacies of the output device (1.0 = 100%).

borderless Bool Controls borderless printing.

Note: This property is effective only if the printer driver supports bor-
derless printing.

4.5.1.5 RIP settings

The settings described in this section are related to the Rip tab of the hotfolder proper-
ties dialog.

Object rip

antiAliasing String The following values are supported:

“Off”

“Text”

“TextVector”

“GlobalLow”

“GlobalHigh”

useDocumentTransparency Bool

removeBackground String The following values are supported:

“Off”

“White”

“Black”

removeBackgroundRange Integer32 Only needed if option removeBackground is not set to “Off”.

Valid values between 0 and 100.

adjustOpacity Integer32 Valid values between -50 and 50.

Productionserver API developers guide · Page 48 of 104

4.5.1.6 Printer driver specific settings

This section contains settings that are specific to a particular printer driver. Each setting
is a JSON value of type String, Double, Integer32 or Boolean.

A list of supported settings can be found in a TechNote for the specific printer driver.

4.5.1.7 Workflow settings

The settings described in this section are related to the Workflow tab of the hotfolder
properties dialog.

Object workflow

previewMode String Enables creation of the preview.

The following values are supported:

“None”: No preview is calculated.

“Simple”: The preview is calculated without applying color manage-
ment.

“Softproof”: Color management is applied while calculating the pre-
view.

previewResolution Integer32 Maximum size of the preview in pixel.

ripAndPrint Bool Rip the job while printing.

autoRip String Automatically rip the job after creation.

The following values are supported:

“False”: Job is stored in the archive without ripping.

“True”: Job is ripped after creation.

“Pause”: Job is stored in the rip queue and set to pause.

autoPrint String Automatically print the job after ripping.

The following values are supported:

“False”: Job is stored in the archive without printing.

“True”: Job is printed after ripping.

“Pause”: Job is stored in the print queue and set to pause.

afterPrint String Handling of the job after printing.

The following values are supported:

“SaveJob”: Save the job in the archive.

“DeleteJob”: Delete the job.

“Delete print data”: Delete print data and save the job in the archive.

costCalc String Enables cost calculation for the job.

The following values are supported:

“False”: Cost calculation is disabled for to the job.

“True”: Cost calculation is enabled for the job.

“Auto”: Cost calculation is performed after ripping.

Productionserver API developers guide · Page 49 of 104

4.5.1.8 Job admin data

The following elements are used to set the job administrative values on the Job Data
tab.

Object admin

jobID String

customerID String

customerName String

comment

comment2

String

dueDate DateTime

4.5.1.9 Form data

The elements described in this section, are used to replace the text of form fields in PDF
files. The list of the form fields is separated from their contents. This reduces redundan-
cies in cases where multiple sets of data are applied to the same PDF file.
This functionality requires a license of the Variable Data Printing Module (VDPM).

Object formData

fields Array A string array with the field names.

sets Array An array of string arrays with the form data. The VDPM is limited to single page PDF
files and to a single set of replacement values. So only the first set of fields will be
evaluated.

Example:

"formData": {
 "fields": [
 "name",
 "email"
],
 "sets": [

["Sebastian Wegner", "sebastian.wegner@colorgate.com"],
 ["Jens Kopp", "jens.kopp@colorgate.com"]
]
 }
}

The replacement values are applied to the form fields in the same order as they are
specified in the “fields” array. So, in the given sample, the text for field “name” is “Se-
bastian Wegner”, the text for the field “email” is “sebastian.wegner@colorgate.com”.

Productionserver API developers guide · Page 50 of 104

4.5.2 Color table

Modify the color table of a job. Only spot colors can be modified. New entries cannot be
created and existing entries cannot be deleted.

PUT jobs/jobID/colorTable

Result:

See chapter 8.2

Productionserver API developers guide · Page 51 of 104

4.6 Job actions

Runs a task depending on the parameter “action”.

PUT jobs/jobID

Parameters:

action String “rip” = Rips the job.

“print” = Prints the job.

“delPrint” = Deletes the print data.

“ripPreview” = Regenerates preview data.

“delPreview” = Deletes preview data.

“abort” = Abort ripping or printing

insertOnTop Bool Optional: When action = “rip” or “print” a value of true inserts the job
on top of the rip or print queue, so it will be ripped/printed with prior-
ity.

downloadOutputFiles Bool Optional: When action = “print” a value of true makes the output files
for the printer available via REST. This is only useful for file-based print-
ers.

The files can be downloaded with the “Files” endpoint. You can obtain
the file IDs via job status endpoint 4.4.1 or the notification
Job.PrintPageFinished.

Result:

n/a

Productionserver API developers guide · Page 52 of 104

5 Endpoint „files“

This endpoint maintains file uploads. Uploaded files will be identified by an ID which will
be generated by the server on upload. This ID will be used when creating a new job.
This approach eliminates the need for multipart-messages when creating new print jobs
(file to print / parameters).
Uploaded files will be removed automatically when the job is created. If no job is cre-
ated within 10 minutes after upload the file is also removed automatically.
For convenience it is also possible to download or delete a file.

5.1 Upload file

Upload a file. Put the unencoded binary data into the message body (no multipart mes-
sage) and provide the content-length field to announce the file size.

POST files?filename=MyFile.tiff

Parameters:

filename String The original filename without path of the uploaded file. Because the
message body contains the binary data of the uploaded file this parame-
ter can only be passed as query in the URI path.

Result:

fileID Integer32 The ID of the file. Use this when creating a new print job.

filenameOriginal String The name of the file as provided in the request.

filenameInternal String The name of the file when saved on the server. If the original filename
is unique among the uploaded files it is identical to the original file-
name. Otherwise it will get an additional serial number.

5.2 Download file

Download a file.

GET files/fileID

Result:

Binary data of downloaded file.

5.3 Delete file

Delete a file.

DELETE files/fileID

Result:

n/a

Productionserver API developers guide · Page 53 of 104

5.4 List files.

Get list of uploaded files. The list only contains files uploaded by the same client.

GET files

Result:

files Array The list of files.

Array files

fileID Integer32 The ID of the file. Use this when creating a new print job.

filenameOriginal String The name of the file as provided in the request.

filenameInternal String The name of the file when saved on the server. If the original filename
is unique among the uploaded files it is identical to the original file-
name. Otherwise it will get an additional serial number.

clientAddress String The address of the uploading client.

uploadTime String Time when the file was uploaded.

5.5 Get file information

Get information about the file.

GET files/fileID/info

Result:

fileID Integer32 The ID of the file. Use this when creating a new print job.

filenameOriginal String The name of the file as provided in the request.

filenameInternal String The name of the file when saved on the server. If the original filename
is unique among the uploaded files it is identical to the original file-
name. Otherwise it will get an additional serial number.

clientAddress String The address of the uploading client.

uploadTime String Time when the file was uploaded.

Productionserver API developers guide · Page 54 of 104

6 Endpoint „notificationSubscriptions“

There are two ways to determine if the status of a print job has changed: Polling and
push notifications.
Polling means the client is periodically checking the status of a print job by sending a
4.4.1 request and receiving the current job status. This approach is easy to implement,
but results in much network traffic.
Notifications are used to avoid such polling tasks. Instead of constantly asking for status
changes the client just waits for a notification. This way network traffic only occurs in
case of state changes of jobs or queues.
To receive such notifications, the client itself must provide a http service to which the
server sends the notifications. To announce this service the client creates a subscription
for notifications.

6.1 List subscriptions

Creates a list of all existing subscriptions.

GET notificationSubscriptions

Result:

subscriptions Array The list of subscriptions.

Array subscriptions

server String The address of the server.

path String The endpoint path of the server.

port Integer32 The port.

secure Bool True for https connection, false for http connection.

userName String User who created the subscription.

queueName String Optional: Only notifications regarding this queue will be sent.

Productionserver API developers guide · Page 55 of 104

6.2 Create subscription

Creates a new subscription. A client can create more than one subscription, so many dif-
ferent services can be informed about the state change of one print job.

POST notificationSubscriptions

Parameters:

server String The address of the server.

path String Optional: The endpoint path of the server.

port Integer32 The port to connect to.

secure Bool If this parameter is true a secure connection over https is initiated, other-
wise an unsecure http-connection will be established.

queueName String Optional: Only notifications regarding this queue shall be sent.

authUsername String Optional: Username for Basic Authentication.

authPassword String Optional: Password for Basic Authentication.

Result:

n/a

6.3 Remove subscription

Remove subscription. A single subscription is identified by the authenticated user, the
server, the path and the queue name. If you do not provide a parameter all subscriptions
matching the other parameters will be removed. If you do not provide any parameter all
subscriptions of the user will be removed.

DELETE notificationSubscriptions

Parameters:

server String Optional: The address of the server.

path String Optional: The endpoint path of the server.

queueName String Optional: Name of the queue

Result:

n/a

Productionserver API developers guide · Page 56 of 104

6.4 Sent notifications

The notifications sent to the http client are POST requests with a JSON body.

POST

Body:

notification String The notification identifier. See the following table for possible values.

date String Date of the notification in the format YYYY-MM-DD.

time String Time of the notification in the format HH:MM:SS.

jobID String Optional: The identifier of the job. This will only be sent for the notification
identifiers “Job.XXX”.

queueName String Optional: The name of the queue. This will only be sent for the notification
identifiers “Queue.XXX”.

data Array Optional: A list of textual data. It is present in the notifications Job.Contain-
erAdd, Job.ContainerRemove and Job.PrintPageFinished, Job.RipGeneralFail-
ure and Job.PrintGeneralFailure.

Array data

key String Identifier of the data value.

Possible values are:

When notification is Job.ContainerAdd or Job.ContainerRemove:

“ContainerName”: Name of the container job.

When notification is Job.PrintPageFinished:

“PageCount”: Number of total pages to print.

“PageNumber”: Number of the current printed page.

Specific printer drivers may add further data. See the driver documenta-
tion.

When notification is Job.RipGeneralFailure or Job.PrintGeneralFailure:

“ErrorMsg”: Description of the error.

value String

Integer32

Value.

Productionserver API developers guide · Page 57 of 104

The following notification identifiers exist:

Value Description

Job.Created Generated when the job is successfully created by the RIP.

Job.Deleted Job has been deleted from the RIP, either manually by the user, or automati-
cally by the RIP after successful production w/o the archive option being ac-
tivated.

Job.RipStarted Generated before the calculation of the print data is started.

Job.RipFinished Generated when the print data has been calculated.

Job.RipGeneralFailure Generated when an unexpected error occurred during the rip process.

Job.RipPrintdataFailure Generated when an error occurred when ripping the print data.

Job.RipPreviewFailure Generated when an error occurred when ripping the preview.

Job.RipPrintdataAbort Generated when ripping the print data was aborted.

Job.RipPreviewAbort Generated when ripping the preview was aborted.

Job.RipAnalysisFailure Generated when an error occurred while analyzing the image file.

Job.PrintStarted Generated before the data transmission to the printer is started.

Job.PrintGeneralError Generated when an unexpected error occurred during the print process.

Job.PrintPageStarted Generated before a new page is printed.

Job.PrintPageFinished Generated when printing of a page is finished.

Job.PrintFinished Job has been printed.

Note: Most printing devices don’t provide a feedback when the job is actually
printed. For these devices the notification is generated as soon as all data is
transmitted to the printer.

Job.CalcPreviewStarted Generated before the calculation of the job preview is started.

Job.CalcPreviewFinished Generated when the preview for the job has been calculated.

Job.DocFileMissing When the document file is not available for the RIP within the timeout pe-
riod, this notification is generated.

Job.SettingsChanged When the document file is not available for the RIP within the timeout pe-
riod, this notification is generated.

Job.CostDataCalculated This notification is generated either when the job has been printed, or when
cost has been estimated before printing.

Note: Only available with printer drivers that support ink counting.

Job.CostDataReported This notification is generated when the printer has completely finished print-
ing the job. Data is provided in two sub-elements (see following tables for
details).

Note: Only available for printer drivers that support reporting of usage data.

Productionserver API developers guide · Page 58 of 104

Job.ContainerAdd This notification is generated when the job has been added to a container.
The “comment” field contains the name of the container.

Job.ContainerRemove This notification is generated when the job has been removed from a con-
tainer. The “comment” field contains the name of the container.

Queue.Opened A queue was opened.

Queue.Closed A queue was closed.

App.Launched The application was launched.

App.Closed The application was closed.

The notifications CostDataCalculated and CostDataReported are only available with the
optional Cost Calculation Module (CCM) activated and properly configured.

Sample:
{
 "date": "2018-10-18",
 "time": "14:37:56",
 "notification": "Job.Created”,
 "jobID": “cea14af8-3f87-4257-bbbf-22c10661ff5a62”
}

Productionserver API developers guide · Page 59 of 104

7 Endpoint „profiles“

This endpoint allows controlling the profiling process from an external application.

Basically, a linearization and profiling task is saved as a CCX file in the Productionserver
folder. If you access it with this API the CCX file will be opened and can be modified by
the endpoints.
It is not possible to keep more than one CCX file open. If you open another CCX file, the
current CCX file will be saved and closed. Because of that it is not recommended to
switch between different CCX files frequently.

Every endpoint contains the filename of the CCX file as part of the URI. The file exten-
sion CCX can be omitted.
Furthermore, the task of linearization and profiling is divided into steps which most end-
points refer to. The name of the step is also appended to the URI. The following steps
exist:

• “preCalibration” only needed when sending/retrieving curves.

• “linearization” for the basic linearization.

• “inkSplitting” for ink splitting calculation

• “linearizationOpt” for the additional linearization of the CMYK channels. Only
needed when the color mode of the MIM contains transfer channels.

• “inkLimit” for ink limit determination.

• “profiling” for the profiling task.

Productionserver API developers guide · Page 60 of 104

7.1 Create profile

Creates a CCX file and the associated MIM.

POST profiles/fileName

Parameters:

queueName String Name of the queue for which the new profile is created.

mim Object Name of the MIM to be created.

hotfolder String Name of the hotfolder whose color management settings are used to ini-
tialize new MIM. As an alternative, parameter "baseMim" can be used.

baseMim Object MIM that is used a template for the new MIM. As an alternative, parame-
ter "hotfolder" can be used.

measurementDevice String Name of the device used to measure the targets.

Result:

n/a

The mim setting must always specify all three fields.

Object mim

media String Media name of requested MIM-combination.

ink String Ink name of requested MIM-combination.

metaMode String Metamode name of requested MIM-combination.

Productionserver API developers guide · Page 61 of 104

7.2 Close

Finishes a linearization task and closes the file.

PUT profiles/filename/close

Parameters:

n/a

7.3 Get status

Gets the status of a linearization task. This endpoint can be used to check repeatedly if
a printing or a calculation task has finished.

GET profiles/fileName/status

Result:

state String Possible values are:

“Ready” – Ready to receive new messages.

“Printing” – Currently printing a target.

“Calculating” – Currently calculating a linearization or profile.

calculationError String Optional: The error message of the last calculation task. Only pre-
sent if the last calculation task was unsuccessful.

percent Integer32 Optional: a value between 0 and 100 to indicate the progress of the
task.

taskStatus Array A list of tasks with their status. Only filled if “state” is “Ready”.

measurementStatus String Optional: If an embedded measurement device is used, this is the
status of the measurement. It will only be reported if state is
“Ready”.

Possible values are:

“Measuring” – Measuring is in progress. This status will be very rare,
because most of the measuring time the overall state is “Printing”
even if the printer is already measuring.

“Failed” – Measuring failed.

“Success” – Measuring succeeded.

measurementFileID Integer32 Optional: If measuring succeeded the resulting CGATs file is up-
loaded to the files endpoint and can then be used in endpoint 7.9 to
send it to the profile.

Productionserver API developers guide · Page 62 of 104

Array status

task String Name of the task. Possible values are:

“PreCalibration”: Precalibration curves were sent.

“DropletSeparation”: Droplet separation curves were sent.

“LinearizationTargetCreated”: A linearization target was created.

“LinearizationTargetMeasured”: Measurement data for linearization was sent.

“LinearizationCalculated”: Linearization curves were calculated.

“InkSplitting”: Ink splitting options are set. Only needed when the color mode contains
transfer channels.

“LinearizationOptTargetCreated”: The additional linearization target of the CMYK chan-
nels was created. Only needed when the color mode contains transfer channels.

“LinearizationOptTargetMeasured”: Measurement data for additional linearization was
sent.

“LinearizationOptCalculated”: Additional linearization curves were calculated.

“InkLimitTargetCreated”: An ink limit target was created.

“ProfileTargetCreated”: Profiling target was created.

“ProfileTargetMeasured”: Profiling target was measured.

“ProfileCreated”: Profile was created.

status Bool Status of task. True, if the task is done / if data exists.

Productionserver API developers guide · Page 63 of 104

7.4 Get curves

There are some curves involved in the linearization task. Some of them can be config-
ured by the user and therefore can be sent to the Productionserver. All curves are then
calculated, and their single points can be retrieved to display the curve to the user.
This endpoint gets a list of curves for each channel.

“curveType” must be one of the following:

• “preCalibration” for the calculated precalibration curves.

• “preCalibrationSetup” for the configured precalibration curves.

• “dropletSeparation” for the calculated droplet separation curves.

• “dropletSeparationSetup” for the configured droplet separation curves.

• “linearization” for the basic linearization.

• “linearizationOpt” for the additional linearization of the CMYK channels. Only
needed when the color mode of the MIM contains transfer channels.

GET fileName/curves/curveType

Result:

curves Array List of curves for each channel.

Array curves

channelName String Name of the channel which the curve is applied to. If it is empty the curve is
applied to all channels. Possible values are:

“Cyan”, “Magenta”, “Yellow”, “Black”,

“CyanLight”, “MagentaLight”, “YellowLight”, “BlackLight”,

“Red”, “Green”, “Blue”, “Violet”, “Orange” and more.

dotSize Integer Only if curveType is “dropletSeparation”: The dot size from 1 (big) to 7
(small). The maximum value depends on the printer configuration.

curvePoints Array Array of curve points.

Array curvePoints

type String Type of the point.

“Bezier” for a supporting Bezier point smoothing the curve.

“Corner” for a point defining the curve.

x Double X coordinate of the point between 0 and 1.

y Double Y coordinate of the point between 0 and 1.

Productionserver API developers guide · Page 64 of 104

7.5 Send curves

Sends a list of curves used for the linearization. Sending of pre-calibration curves and
droplet separation curves is supported, so “curveType” must be “preCalibrationSetup”
or “dropletSeparationSetup”.
Sending curves always resets all existing curves, so if the array is empty all existing
curves will be removed.

PUT fileName/curves/curveType

curves Array List of curves.

Array curves

channelName String Name of the channel which the curve is for. If it is empty the values apply to
all channels. See chapter 0 for possible channel names.

dotSize Integer Only if curveType is “dropletSeparation”: The dot size from 1 (big) to 7
(small). The maximum value depends on the printer configuration.

curvePoints Array Array of at least two curve points.

Object curvePoints

type String Type of the point:

“Bezier” for a Bezier point smoothing the curve.

“Corner” for a supporting point defining the curve.

x Double X coordinate of the point between 0 and 1.

y Double Y coordinate of the point between 0 and 1.

Productionserver API developers guide · Page 65 of 104

7.6 List targets

Gets a list of all targets usable with the combination of measurement device and color
mode.

GET profiles/fileName/targets/step

Result:

targets Array Array of all targets.

Array targets

Result:

name String Name of the target. This is the key to refer to in other endpoints.

contentType String Depending on the content type there are different parameters to provide when
printing out the target. See chapter 7.7.

The following types exist:

“Static”: The target is fully described by the ctx file. It is not possible to config-
ure any parameters.

“DynFiles”: The layout parameters of the target can be defined by the user. The
number of patches and the patch colors are defined in the ctx file. The final tar-
get is generated by the Productionserver dynamically. Only available for lineari-
zation targets.

“DynPatches”: The layout parameters of the target and the number of patches
can be defined by the user. The patch colors and the final target is generated by
the Productionserver dynamically. Only available for profiling targets.

description String Localized target description which can be displayed to the user. The preferred
language of the description can be defined by the HTTP header Accept-Language.

Productionserver API developers guide · Page 66 of 104

7.7 Create target

Creates a target. This must be done before printing a target or sending a pre-calibration
curve.

PUT profiles/filename/createTarget/step

Parameters:

targetName String Name of the target to be used. It must be one of the names listed by end-
point 7.6.

targetLayout Object Optional: Specifies the layout parameters to generate the target dynami-
cally. Only appropriate if the type of the target is “DynFiles” or “Dyn-
Patches”.

targetOptions Object Optional: Specifies some target options to generate the target dynamically.
Always needed if the type of the target is “DynPatches”.

Object targetLayout

targetWidth Double Width of the target in mm.

targetHeight Double Height of the target in mm.

patchWidth Double Width of a patch in mm.

patchHeight Double Height of a patch in mm.

rowDistance Double Distance of the rows in mm.

patchDistance Double Distance of the patches in a row in mm.

columnNames Bool Activates printing of column names.

rowNames Bool Activates printing of row names.

redundantPatches Bool Optional for contentType “DynPatches”: Activates creation of redundant
patches to detect inhomogeneities of the substrate.

randomizePatches Bool Optional for contentType “DynPatches”: Activates randomizing of patch
colors.

bwSeparatorBars Bool Optional for certain measurement devices: Activates printing of
black/white patch separators.

pages Array Read-only: Only when retrieving target data (Chapter 7.10). Contains in-
formation about the pages of the target. Useful when dealing with mul-
tipage targets.

Array pages

columns Integer32 Number of colums.

rows Integer32 Number of rows.

firstPatchIndex Integer32 Index of the first patch in the total number of patches.

countPatches Integer32 Number of patches (Can be less than columns * rows on the last page).

Productionserver API developers guide · Page 67 of 104

Object targetOptions

patchCount Integer32 Optional: Number of patches to print. Only needed if “pageCount” and
“patchFile” is empty.

adjustPatchCount Bool Optional: Adjust patch count automatically to fill rows and columns.

pageCount Integer32 Optional: Print these numbers of pages. Only needed if “patchCount”
and “patchFile” is empty.

patchFileID Integer32 Optional: ID of a IT8 file containing the reference patches. You get this
number when uploading the file to the “files” endpoint. Only needed if
“patchCount” and “pageCount” is empty.

fullGamut Bool Optional: Support full gamut of output device.

patchInkLimit Integer32 Optional: Ink limit for the patches between 100 and 400.

Productionserver API developers guide · Page 68 of 104

7.8 Print target

Starts the print of a target. This endpoint immediately returns. Send requests to the
“status” endpoint to check if the print has finished.
If an embedded measurement device (such as the Epson SpectroProofer) is used, the tar-
get will be measured after printing.

PUT profiles/filename/startPrintTarget/step

Parameters:

copyCount Integer32 Optional: Print multiple copies. Default is 1.

copyDistX Double Optional: Only used if copyCount is bigger than 1. Horizontal distance of
copies in mm, Default is 10.

copyDistY Double Optional: Only used if copyCount is bigger than 1. Vertical distance of
copies in mm, Default is 10.

rotation String Optional. The following values are supported:

“Rotate0”: Do not rotate.

“Rotate90”: Rotate 90 degrees.

“Rotate180”: Rotate 180 degrees.

“Rotate270”: Rotate 270 degrees.

“RotateAuto”: Calculate best rotation automatically.

Default is “Rotate0”.

printJobInfo Bool Optional: Print job info. Default is false.

centerX Bool Optional: Center target horizontally. Default is false.

mirror Bool Optional: Mirror output. Default is false.

jobName String Optional: The name of the job. On file-based printer drivers this may
also affect the output file names. If this parameter is missing a standard
job name will be generated automatically.

getTargetFiles Bool Optional: The target PDFs shall be provided via “files” endpoint. The re-
sult will contain the file IDs then. Default is false.

Result:

jobID String The identifier of the job. Use this in subsequent requests regarding this
job.

jobName String The name of the job.

fileName String The name of the file to print.

size String The size of the job.

copies Integer32 The number of copies.

fileSize String File size of the job.

targetFiles Array Only if “getTargetFiles” is true. Provides the IDs and names of the target
file PDFs. They can then be downloaded via “files” endpoint.

Productionserver API developers guide · Page 69 of 104

7.9 Send data

Send data.

PUT profiles/filename/data/step

Parameters:

fileID Integer32 Optional: ID of the associated IT8 file. You get this number when
uploading the file to the “files” endpoint. Not needed for InkLimit
or when sending patchData.

patchData Array Optional: Patch data.

inkLimitOptions Object Optional: Options for the ink limit.

inkSplittingOptions Object Optional: Options for the ink splitting. Only needed when the
color mode of the MIM contains transfer channels.

Array patchData

channels Array Optional: only if the target contains more than one channel (step
linearisation).

patches Array Optional: only if the target contains only one channel (step profil-
ing).

Array channels

channelName String Name of the channel.

See chapter 0 for possible channel names.

maxDensity Double Optional: The full color value of the channel.

maxDensityIndex Integer32 Optional: The patch index of the full color value. Alternative to
“maxDensity”.

patches Array Patch values.

Array patches

index Integer32 Index of the patch. It is sufficient to provide only the patches you
want to change instead of providing all patches of the channel.

ignoreSample Bool True if the patch measurement of this patch should be ignored
when calculating a linearization or profile.

Object inkLimitOptions

inkLimitType String Possible values:

“AllChannels”

“KeepBlack”

maxDensity Integer32 Value of the maximum density between 0 and 400 (for CMYK).

Productionserver API developers guide · Page 70 of 104

Object inkSplittingOptions

channels String Optional: Array of inkSplittingOptions. Only needed if options should be ap-
plied per channel. In this case all other options can be omitted here.

preset String Optional: Name of the preset. If no preset is specified, you must specify the
following values.

The following presets exist:
“Minimum Ink (Default)”

“Maximum Density”

“Enhanced Smoothness”

“Balanced”

channelName String Optional: Name of the channel (eg. “Cyan”, “Magenta”). Only used if op-
tions are sent for each channel in “channels”,

lightLimit Integer32 Value of the maximum light ink amount between 0 and 100.

totalLimit Integer32 Value of the maximum ink amount between 0 and 100.

transition Integer32

cycles Integer32

smoothness Integer32

dMax Integer32

7.10 Get data

Get reference and measurement data. The data itself is stored in the fileID endpoint and
can be downloaded via endpoint 5.2.

GET profiles/filename/data/step

Result:

fileIDReference Integer32 ID of the IT8 file containing the reference values.

fileIDMeasurement Integer32 Optional: Only if measurement exists. ID of the IT8 file containing the
measurement values.

targetLayout Object Target layout options. See chapter 7.7

profilingOptions Object Appears only if step is profiling: Returns the options for the profiling
which can be set when calculating a profile. See chapter 7.11.

patchData Object Contains the patch data for the target.

Productionserver API developers guide · Page 71 of 104

Object patchData

densityMode String Mode of the density values. “ISO_A”, “ISO_E” or “ISO_T”.

channels Array Appears only if the target contains more than one channel (step line-
arisation).

patches Array Appears only if the target contains only one channel (step profiling).

This array only appears if the target contains more than one channel (step Lineariza-
tion).

Array channels

channelName String Name of the channel.

See chapter 0 for possible channel names.

maxDensity Double The full color value of the channel.

maxDensityIndex Integer32 The patch index of the full color value.

patches Array Patch values.

Array patches

index Integer32 Index of the patch.

name String Name of the patch.

measured Bool True if the patch contains measurement data.

ignoreSample Bool True if the patch measurement of this patch should be ignored
when calculating a linearization.

lab Array<Double> Only if patch has measurement data: The lab values of the meas-
urement.

lch Array<Double> Only if patch has measurement data: The c value of the meas-
urement.

density Double Only if patch has measurement data: The density of the patch.

rgb Array<Double> Only if patch has measurement data: An RGB color value to dis-
play the patch.

spectralValues Array<Double> Only if patch has spectral measurement data: The spectral val-
ues of the measurement.

refValues Array<Double> Only if patch has reference data.

deltaE Double Only if patch has reference data and measurement data. The
deltaE between reference and measurement.

Productionserver API developers guide · Page 72 of 104

7.11 Calculate linearization / profile

Starts the calculation of linearization curves or of a profile. This endpoint immediately
returns. Send requests to the “status” endpoint to check if the calculation has finished.

PUT profiles/filename/startCalculate/step

Parameters:

linearizationOptions Array Optional: Options for the linearization calculation.

profilingOptions Object Optional: Mandatory options for the profile calculation.

Array linearizationOptions

channelName String Name of the channel the smoothing is applied to. If the name is
empty this value applies for all channels which do not have an indi-
vidual smoothing set.

See chapter 0 for possible channel names.

smoothing Integer32 Optional: Value of the smoothing value between 0 and 100.

Object profilingOptions

blackGeneration Object Optional: Black generation options.

blackPointOptions Object Optional: Black point mode.

options Object General profiling options.

separationCurves Array Curves of the separation preview, read only. Same data type as ar-
ray “curves”, chapter 7.4.

Productionserver API developers guide · Page 73 of 104

Object blackGeneration

multicolorMode String Optional, default value = “Smooth”.

Available options:

“Strong”

“Smooth”

“Sparse”

“SmoothSplit”

blackGeneration String Available options:

“UCR”

“GCR”

“UCRSmooth”

“GCRSmooth”

“MaxK”

gcrStrength Integer32 Value between 0 and 100.

blackStart Integer32 Value between 0 and 100.

blackWidth Integer32 Value between 0 and 100.

pureBlack Bool Optional, default value = false.

pureGray Bool Optional, default value = false.

Object blackPointOptions

blackPointMode String “Auto”

“Lock”

“BalanceCMY”

blackMax Integer32 Only needed if blackPointMode is not “Lock”

inkTotal Integer32 Only needed if blackPointMode is not “Lock”

blackPointValues Array<Integer32> Only needed if blackPointMode is “Lock”

Productionserver API developers guide · Page 74 of 104

Object options

viewCondition

String Optional, default value = “D50”.

Viewing light condition. Possible value:

“D50”

“D55”

“D65”

“Tungsten”

“IlluminantA”,

“IlluminantB”,

“IlluminantC”,

“IlluminantE”

“IlluminantF2”,

“IlluminantF7”,

“IlluminantF11”,

“IlluminantF12”

applyToWindows Bool Optional, default value = false

Make profile available for Windows color manage-
ment.

inkTotal Integer32 Optional, default value = 400.

profileSize String Optional, default value = “Large”.

Possible values:

“Small”,

“Medium”,

“Large”,

“Huge”

profileFormat Integer32 Optional, default value = 2

2 or 4.

gamutMapping String Optional, default value = “Neutral”.

“Neutral”,

“ColorBoost”,

“AbsCompression”

grayBalance Integer32 Optional, default value = 0

Valid values are between -10 and 10.

channelsActive Array Optional: List of active channels.

channelsCombinable Array Optional for generic color mode: List of active com-
binable channels.

combineChannelsAuto Bool Optional for generic color mode

brightenerCorrection Bool Optional, default value = false.

Productionserver API developers guide · Page 75 of 104

measurementCorrection Bool Optional, default value = false.

coloredSubstrateOptimization Bool Optional, default value = false.

applyLinToProfile Bool Optional, default value = false.

Array channelsActive / channelsCombinable

channelName String Name of the channel.

active Bool Status of the channel.

Productionserver API developers guide · Page 76 of 104

7.12 Open profile

Opens a CCX file in a specific queue. Since accessing any profile-endpoint implicitly
opens a ccx this endpoint is only needed if you have more than one queue of the same
printer type. Without calling this endpoint the ccx would be opened in the first queue of
the associated printer.

PUT profiles/filename/open

Parameters:

queueName String Name of the queue for which the profile shall be opened.

Result:

n/a

7.13 Workflow examples

Examples for the consecutive steps of a linearization

CMYK

7.1 Create profile (Not needed when continuing a previously created profile.)

7.5 Optional: Send precalibration curves

7.7 Create linearization target

7.8 Print linearization target

7.3 Poll status until “Ready”

 Measure linearization target externally

5.1 Upload IT8 measurement file

7.9 Send measurement data of linearization target

0 Calculate linearization curves

7.3 Poll status until “Ready”

7.7 Print ink limit target

7.8 Print ink limit target

7.9 Send ink limit data

7.3 Poll status until “Ready”

7.7 Create profiling target

7.8 Print profiling target

7.3 Poll status until “Ready”

 Measure profiling target externally

5.1 Upload IT8 measurement file

Productionserver API developers guide · Page 77 of 104

7.9 Send measurement data of profiling target

0 Calculate profile

7.3 Poll status until “Ready”

7.2 Close profile

Productionserver API developers guide · Page 78 of 104

CMYK + transfer channels

7.1 Create profile (Not needed when continuing a previously created profile.)

7.5 Optional: Send precalibration curves

7.7 Create linearization target

7.8 Print linearization target

7.3 Poll status until “Ready”

 Measure linearization target externally

5.1 Upload IT8 measurement file

7.9 Send measurement data of linearization target

0 Calculate linearization curves

7.3 Poll status until “Ready”

7.7 Create CMYK linearization target

7.8 Print CMYK linearization target

7.3 Poll status until “Ready”

 Measure CMYK linearization target externally

5.1 Upload IT8 measurement file

7.9 Send measurement data of CMYK linearization target

0 Calculate CMYK linearization curves

7.3 Poll status until “Ready”

7.7 Create profiling target

7.8 Print linearization target

7.3 Poll status until “Ready”

 Measure profiling target externally

5.1 Upload IT8 measurement file

7.9 Send measurement data of profiling target

0 Calculate profile

7.3 Poll status until “Ready”

7.2 Close profile

Productionserver API developers guide · Page 79 of 104

8 Endpoint „colorTables“

This endpoint accesses color table files found in the “ColorTables” folder of the installa-
tion. The structures used to display and modify a color table are the same when request-
ing or modifying the color table of a job (see 4.4.6 and 4.5.2).

8.1 List color tables

Gets a list of all color table files in the “ColorTables” folder of the installation. The file
extension “cct” is omitted.

GET colorTables

Result:

colorTables Array The list of all color table names.

8.2 Get color table

Gets a list of all color table entries of a color table.

GET colorTables/colorTableName

Result:

colorTableEntries Array The list of all color table entries.

Values that are invalid for a certain configuration will not be displayed when getting a
color table file. When changing a color table those values will not be accepted.

Array colorTableEntries

name String This is the identifier to address a particular entry.

For spot colors it is the name of the spot color.

All other colors build the name of the input components, eg RGB
(255/0/0).

enabled Bool True if replacement is enabled

enabledBitmap Bool Valid only for color table files and spot colors of rip jobs.

enabledVec Bool Valid only for color table files and spot colors of PDF rip jobs.

enabledText Bool Valid only for color table files and spot colors of PDF rip jobs.

spotColorMaxGamut Bool Valid only for spot colors with output color model “Lab” or “Spectral”.

sourceName String Read-Only: Valid only for PantoneLIVE® colors.

masterName String Read-Only: Valid only for PantoneLIVE® colors.

inputColor Object The input color for this entry.

outputColor Object The output color for this entry.

Productionserver API developers guide · Page 80 of 104

documentColor Object The document color for this entry. Appears only when retrieving the
color table of a PDF rip job.

Object inputColor

colorModel String The color model name of the input color. Allowed values:

“Spot”,

“CMYK”,

“RGB”,

“Gray”,

“CMYKRange”,

“RGBRange”,

“GrayRange”

values Array Double array of component values. Only applicable if the color model
is not “Spot”.

Object outputColor

colorModel String The color model name of the output color. Allowed values:

“Lab”,

“Spectral”,

“CMYK”,

“Alias”,

“None”,

“Omit”,

“DeviceSpot”,

“Custom”, (Device colors)

“Alias”

customColorModel String The name of the device color model. Only applicable if colorModel is
“Custom”.

aliasName String The name of the alias color. Only applicable if colorModel is “Alias”.

opacity Double Opacity value between 0 and 100. Only applicable for spot colors with
output color model “Lab” or “Spectral”.

samples Array Sample values. Only applicable for color model “CMYK”, “Lab” or
“Spectral”.

Productionserver API developers guide · Page 81 of 104

Array samples

tint Integer32 Optional for color model “Lab” and “Spectral”: Tint value for the
sample between 0 and 100. Can be omitted if the color has only one
sample. The first sample must always have a tint value of 100.

backing Integer32 Optional for color model “Lab” and “Spectral”: Backing value for
the sample, “Substrate” or “Black”. Can be omitted if the color has
only one sample. The first sample must always have backing “Sub-
strate”.

values Array Double array of component values.

spectralValues Array Optional: Only for color model “Spectral”: Double array of 36 spec-
tral values (380-730nm in 10nm steps).

predictedColor Object Optional: Only if an output profile is active.

deltaE76

deltaE94

deltaE00

Double Optional: Only if an output profile is active. Delta-E distance of pre-
dicted color.

replacementSample Object Sample values to display the replacement color.

predictedSample Object Optional: Only if an output profile is active. Sample values to dis-
play the predicted color.

Object predictedColor

type String Type of the color values. Always “LAB”

values Array Three Lab values.

Object replacementSample, predictedSample

type String Type of the color values. Always “RGB”

values Array Three RGB values.

Object documentColor

colorModel String The color model name of the document color.

values Array Double array of component values.

replacementSample Object Optional: Only if an output profile is active. Sample values to display
the document color.

Productionserver API developers guide · Page 82 of 104

8.3 Create color table entries

Creates new color table entries. If the color table does not yet exist it is created. The
new entries must not already exist in the color table.

POST colorTables/colorTableName

Parameters:

colorTableEntries Array Array of new entries. See chapter 8.2

8.4 Change color table entries

Changes color table entries in an existing color table. Values which are not provided will
be left unchanged.

PUT colorTables/colorTableName

Parameters:

colorTableEntries Array Array of changed entries. See chapter 8.2

8.5 Delete color table / entries

Deletes color table entries or a color table file.

DELETE colorTables/colorTableName

Parameters:

colorTableEntries Array Optional: String array of entry names. If no array is provided the complete
file will be deleted.

Alternatively, a single entry name can be provided in the URL:

DELETE colorTables/colorTableName/entryName

Parameters:

n/a

Productionserver API developers guide · Page 83 of 104

9 Endpoint „colorCorrections“

This endpoint allows controlling the functionality of the Color Correction Loop Module
(CCLM). Please see section 9.7 for the steps required to do an iterative color correction
process.

9.1 Create color correction

Starts the color correction process for a job and defines basic settings.

POST colorCorrections/jobID

Parameters:

inspectionSystem String Type name of the inspection system used for the color correction.
Allowed values: “IPAC ACMS”, “IPAC ICMS”

fileNameSuffix String Suffix used for the name of inspection files.

9.2 Delete color correction

Removes the color correction for a job.

DELETE colorCorrections/jobID

Parameters:

a/a

Productionserver API developers guide · Page 84 of 104

9.3 Get color correction info

Retrieves information about the color correction process for a job.

GET colorCorrections/jobID/info

Parameters:

n/a

Result:

inspectionSystem String Type name of the inspection system used for the color correction.
Allowed values: “IPAC ACMS”, “IPAC ICMS”

fileNameSuffix String Suffix used for the name of inspection files.

iterationCount Integer32 Number of iterations.

activeIteration Integer32 1-based index of the active iteration. Set to 0 if there is no active it-
eration.

iterationFiles Array The array contains one element per iteration, with the names of the
master and sample data files.

additionalJobs Array The list of additional jobs. Only if additional jobs exist.

Array files

master String File name of the master data file.

sample String File name of the sample data file.

Array additionalJobs

jobID String The identifier of the job.

jobName String The name of the job.

fileName String The name of the file.

9.4 Create inspection system files

Starts the creation of the image files that the inspection system requires to acquire
color values for the job. Use the endpoint “Get status“ (9.7), to check when the task is
finished.

POST colorCorrections/jobID/inspectionFiles

Parameters:

n/a

Productionserver API developers guide · Page 85 of 104

9.5 Create iteration

Adds an iteration to the color correction process for a job and starts the calculation of
the correction profile as well as a new set of inspection system files.
The master and sample data files must be uploaded before the iteration is created, see
section 5.1 “Upload file”.
Use the endpoint “Get status“, to check when the task is finished (section 9.7).

POST colorCorrections/jobID/iteration

Parameters:

masterFileID Integer32 ID of the master data file.

sampleFileID Integer32 ID of the sample data file.

printJobWithCorrection Bool Optional: If true, the job will be printed after the cor-
rection profile was created.

printAdditionalJobsWithCorrection Array Optional: The list of additional jobs to print after the
correction was applied. These jobs must have been
added before with endpoint 9.8.

9.6 Delete iteration

Removes the active iteration from the color correction process for a job.
If there is an earlier iteration, it is activated.

DELETE colorCorrections/jobID/iteration

Parameters:

n/a

Productionserver API developers guide · Page 86 of 104

9.7 Get status

Gets the status of the running task. This endpoint can be used to check repeatedly if a
task has finished.

GET colorCorrections/jobID/status

Parameters:

n/a

Result:

State String Possible values are:

“Ready” – The inspection files are ready for download.

“CreatingInspectionFiles” – Currently creating the inspection files.

“Calculating” – Currently creating correction profile and the inspec-
tion files.

percent Integer32 A value between 0 and 100 to indicate the progress of the task.
Only filled on state not “Ready”.

fileID Integer32 ID of the ZIP with the inspection files. Only filled if file was created
and state “Ready”.

9.8 Add jobs to correction

The correction can be applied to additional jobs. This endpoint allows to add jobs to this
list. The current correction profile will be applied to all jobs.

POST colorCorrections/jobID/additionalJobs

Parameters:

additionalJobs Array A string array with jobIDs to be added to the correction.

9.9 Remove jobs from correction

This endpoint allows to remove jobs from the list of additional jobs. The applied correc-
tion profile of this job will also be removed.

DELETE colorCorrections/jobID/additionalJobs

Parameters:

additionalJobs Array A string array with jobIDs to be removed from the correction.

Productionserver API developers guide · Page 87 of 104

9.10 Workflow example

The following steps are typically used for an iterative color correction process.

Step Endpoint

1 9.1 Create color correction

2 9.4 Create inspection system files

3 9.5 Poll status until inspection system files are available

4 5.2 Download ZIP archive with inspection system files

5 External workflow on inspection system to detect color deviations on the printed goods

6 5.1 Upload master and sample data files, provided by the inspection system

7 9.6 Create iteration

8 9.8 Poll status until correction profile and inspection system files are available

9 5.2 Download ZIP archive with inspection system files

 Repeat from step 5 for next iteration

Productionserver API developers guide · Page 88 of 104

10 Endpoint „controlWedge“

This endpoint allows controlling the functionality of the control wedge evaluation for a
job. (CCLM). Please see chapter xxx to see how to configure a job printing a control
wedge.

10.1 Get targets

Creates a list of available targets depending on the color mode and the measurement
device.

GET controlWedge/jobID/targets

Parameters:

measurementDevice String Name of the device used to measure the target.

Result:

targets Array The list of available targets.

Array targets

targetName String Name of the target description file.

fileName String Filename of the target.

description String Descriptive text.

10.2 Get evaluation

Gets the control wedge evaluation for a job.

GET controlWedge/jobID

Parameters:

printingCondition String Optional for proofing workflow. The printing condition. The list of
available conditions are delivered by this endpoint in field ‘available-
Conditions’.

createReport Bool Optional: Creates a html report file. It will be uploaded to the files
endpoint. Default is false.

reportUseLogo Bool Optional: The html report file will contain a logo. Default is true.

reportDetailed Bool Optional: The html report is detailed with patches: Default is true.

Result:

targetName String Name of the target description file.

printingCondition String Only in proofing workflow. Printing condition.

printingConditionTitle String Only in proofing workflow. Display name for the printing condition.

Productionserver API developers guide · Page 89 of 104

reference String Reference profile.

simulationProfile String Simulation profile.

deltaEType String DeltaEType. Available values:

“DeltaE”,

“DeltaE94”,

“DeltaE2000”

customer String Customer name.

comment String Comment.

measured String Timestamp of creation.

colorMode String Color mode of the job.

results Array Results of the evaluation.

reportFile Object Contains the data of the html report files if parameter ‘createReport’
is true.

patches Array The list of patches.

availableConditions Array Proofing workflow: The list of available printing conditions.

Array results

class String Name of result class.

values Array List of result values.

Array values

name String Name of condition.

value Double Result value.

limit Double Standard limit.

limitOk Bool True if ‘result’ is not higher than ‘limit’.

userLimit Double User limit.

userLimitOk Bool True if ‘result’ is not higher than ‘userLimit’.

Object reportFile

fileIDReport Integer32 ID of the html report file.

fileNameReport String Name of the html report file.

fileIDLogo Integer32 ID of the logo file.

fileNameLogo String Name of the logo file.

Array patches

name String Name of the patch.

labRef Array<Double> Lab values of the reference.

Productionserver API developers guide · Page 90 of 104

rgbRef Array<Double> An RGB color value to display the reference value.

deviceColor Array<Double> Device color values of the reference.

measured Bool True if the patch contains measurement data.

ignoreSample Bool If measurement data exists: True if the patch measurement of this
patch should be ignored when calculating the result.

lab Array<Double> Lab values of the measurement.

rgb Array<Double> An RGB color value to display the measurement value.

deltaE

deltaH

deltaAB

Double Delta between measurement and reference.

Array availableConditions

printingCondition String Printing condition.

printingConditionTitle String Display name for the printing condition.

10.3 Create evaluation

Creates a new control wedge evaluation for a job. The measurement data file must be
uploaded before, see section 5.1 “Upload file”.

POST controlWedge/jobID

Parameters:

fileID Integer32 ID of the associated IT8 file. You get this number when uploading the
file to the “files” endpoint.

deltaEType String Optional: Available values:

“DeltaE”,

“DeltaE94”,

“DeltaE2000”

backing String Optional: Available values:

“Black”,

“White”

customer String Optional

comment String Optional

Productionserver API developers guide · Page 91 of 104

10.4 Delete evaluation

Removes the control wedge evaluation from the job.

DELETE controlWedge/jobID

Parameters:

n/a

10.5 Workflow example

The following steps are used to create a control wedge evaluation.

Step Endpoint

1 10.1 Get a list of available targets for the job

2 4.5.1.3 Change job settings to configure the control wedge to be printed

3 4.6 Rip and print the job together with the control wedge

4 External workflow to measure the control wedge target

5 5.1 Upload the it8 file with the measurement data

6 10.3 Create the evaluation

7 10.2 Get the evaluation results

Productionserver API developers guide · Page 92 of 104

11 Endpoint „container“

This endpoint allows creating and manipulating container jobs. It provides only the func-
tionality specific to containers. Since a container is also a job most parts of the job end-
point (See chapter 4) also apply to containers.

11.1 Create container

Creates a container from a list of jobs.

POST container

Parameters:

jobs Array<String> The list of jobs (job IDs) to be put into the container.

settings Object Optional: The settings of the container. See chapter 11.2.2

Result:

 See contents of Array jobs in chapter 4.1.

11.2 Get container data

11.2.1 Get job list

Gets the list of jobs in the container.

GET container/jobID/jobs

Parameters:

n/a

Result:

jobs Array The list of jobs.

Array jobs

jobID String The identifier of the job.

jobName String The name of the job.

fileName String Filename of the job.

x Double X-offset of the job inside the container.

y Double Y-offset of the job inside the container.

width Double Job width.

height Double Job height.

Productionserver API developers guide · Page 93 of 104

11.2.2 Get settings

Gets the container settings. Since a container is a special kind of jobs with limited set-
tings this endpoint is also called if you call endpoint 4.4.7 on a container.

GET container/jobID/settings

Parameters:

n/a

Result:

settings Object The settings of the container.

Object settings

job Object Job settings.

workflow Object Workflow settings. See Chapter 4.5.1.7.

printer Object Printer settings.

container Object Container settings.

11.2.2.1 Job settings

The settings described in this section are related to the Printer tab of the hotfolder
properties dialog.

Object printer

jobName String The name of the job.

11.2.2.2 Printer settings

The settings described in this section are related to the Printer tab of the hotfolder
properties dialog.

Object printer

mediaSizeName String Specifies the media size as name. The name is converted to media
width and size using the media sizes provided by the printer driver.

mediaWidth Double Width of the media, used to produce the job, in mm.

mediaHeight Double Height of the media, used to produce the job, in mm.

Note: If this parameter is set equal/below 0 (zero), the rollfeed option
is activated.

borderless Bool Controls borderless printing.

Note: This property is effective only if the printer driver supports bor-
derless printing.

Productionserver API developers guide · Page 94 of 104

Productionserver API developers guide · Page 95 of 104

11.2.2.3 Container settings

The settings described in this section are related to the Container tab of the hotfolder
properties dialog.

Object container

arrangeMethod String “NONE”: No automatic arrangement

“EDGE2EDGE”: Cut optimized

“ANYTYPE”: Media optimized

“ORDERED”: Ordered nesting

“TRIM”: Trim nesting

jobDistanceX

jobDistanceY

Double The distance between jobs when they are automatically arranged.

fixedSize Bool Forces the size of the container to be fixed.

width

height

Double Fixed container size in mm. Only applicable when fixedSize=true.

marginTop

marginBottom

marginLeft

marginRight

Double Margins in mm.

alignX String Horizontal alignment.

The following values are supported:

“Left”

“Center”

“Right”

copyCount Integer32 Multi output count.

copyDistX Double Horizontal distance of multiple output in mm.

copyDistY Double Vertical distance of multiple output in mm.

Productionserver API developers guide · Page 96 of 104

11.3 Change container data

11.3.1 Add jobs

Adds new jobs to an existing container.

PUT container/jobID/jobs

Parameters:

jobs Array<String> The list of jobs (job IDs) to be added to the container.

Result:

n/a

11.3.2 Change settings

Changes the settings of a container. Since a container is a special kind of jobs with lim-
ited settings this endpoint is also called if you call endpoint 4.5.1 on a container.

PUT container/jobID/settings

Parameters:

settings Object See chapter 11.2.2 for the options to set.

Result:

n/a

11.3.3 Change positions

Changes the positions of jobs in a container. Overrides the automatic arrangement of
job positions.

PUT container/jobID/settings

Parameters:

jobs Array Array of jobs.

Result:

n/a

Array jobs

jobID String The identifier of the job.

x Double X-offset of the job inside the container.

y Double Y-offset of the job inside the container.

Productionserver API developers guide · Page 97 of 104

11.3.4 Trigger auto arrangement

Triggers the automatic arrangement of jobs.

PUT container/jobID/autoArrange

Parameters:

n/a

Result:

n/a

11.4 Remove container data

11.4.1 Remove jobs

Removes jobs from a container. The jobs are put back into the job archive.

DELETE container/jobID/jobs

Parameters:

jobs Array<String> The list of jobs (job IDs) to be removed from the container.

Result:

n/a

11.4.2 Split container

Removes all jobs from a container and then removes the empty container. The jobs are
put back into the job archive.

DELETE container/jobID

Parameters:

n/a

Result:

n/a

Productionserver API developers guide · Page 98 of 104

12 Testing with Postman

12.1 Introduction

Postman is a tool to manage HTTP requests and send requests to servers. This way it is
possible to see the API in action before implementing your own API client code. This is
no manual for Postman but explains some basic steps you must do to test the API with it.

You find a set of requests in the associated json file CGWebAPI_PostmanCollection.json
which you can import as a collection in Postman. Select it with the menu command File-
>Import to load it into Postman.
There is also a json file CGWebAPI_PostmanEnvironment.json with environment varia-
bles you will need. Import it the same way as the collection.

After that you see the requests at the left:

https://www.getpostman.com/

Productionserver API developers guide · Page 99 of 104

The environment is named “CG Server”. It should be visible at the top of the window.
If you click the eye symbol the list of variables in the environment is visible. You may
have to edit some of the initial values if your server address differs or if your queues
have different names.

The following environment variables are defined:

Variable Description

url The url to the server including the version segment.

queueName The name of the queue you want to put new jobs into. It should already be opened in
the Productionserver.

jobID The ID of the job you want to manipulate. Will be set automatically to the new job
when created with a 4.2 request.

fileID The ID of the last uploaded file. Will be set automatically if you upload a file with a
5.1 request.

fileName Should be the filename you selected in the 5.1 request. Set this parameter here.

queueName2 The name of another queue you want to test opening (3.2) and closing (3.3) queues
with.

cosFile The filename of queueName2. Wil be used of request 0 to open another queue.

hotfolder The name of the hotfolder used when a new job is created. Must be configured in the
queue selected by queueName.

Productionserver API developers guide · Page 100 of 104

To print a file, you have to upload it. Before sending the first file upload request you
must select a printable file in the 5.1 request.

Productionserver API developers guide · Page 101 of 104

12.2 Example: Printing a file:

Send a 5.1 request to upload the file. You receive the fileID.

Productionserver API developers guide · Page 102 of 104

Send a 4.2 request to create a new print job. You provide the fileID you received in the
previous step. You receive the jobID of the newly created job.
The status “printed” is set to false.

Productionserver API developers guide · Page 103 of 104

Send a request with parameter “action”:”print”. You should receive status OK which
means printing has started.

Productionserver API developers guide · Page 104 of 104

Send a 4.4.1 request to receive the status of the job. Repeat the request once per sec-
ond until the status “printed” is set to true.

